时间 | Moran's I | Z值 | P值 |
1月21—27日 | 0.456 | 24.408 | <0.001 |
1月28日至2月31日 | 0.480 | 25.610 | <0.001 |
2月4—10日 | 0.404 | 23.264 | <0.001 |
2月11—17日 | 0.293 | 20.498 | <0.001 |
2月18—24日 | 0.262 | 14.006 | <0.001 |
2月25日至3月2日 | 0.143 | 8.155 | <0.001 |
3月3—9日 | 0.015 | 1.289 | 0.197 |
3月10—16日 | 0.040 | 3.863 | <0.001 |
3月17—23日 | 0.095 | 6.910 | <0.001 |
1月21日至3月23日 | 0.436 | 25.363 | <0.001 |

Citation: Yingying Yang, Siyi Zhan, Qijing Jiang and Chuanxi Fu. Spatiotemporal characteristics of coronavirus disease 2019 in 258 cities in China[J]. Disease Surveillance. DOI: 10.3784/j.issn.1003-9961.2020.11.005

中国258个城市新型冠状病毒肺炎时空分布特征研究
English
Spatiotemporal characteristics of coronavirus disease 2019 in 258 cities in China
-
-
[1]
Li Q, Guan XH, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia[J]. N Engl J Med, 2020,382(13):1199–1207. DOI:10.1056/NEJMoa2001316.
-
[2]
Zhan SY, Yang YY, Fu CX. Public′s early response to the novel coronavirus-infected pneumonia[J]. Emerg Microbes Infect, 2020,9(1):534. DOI:10.1080/22221751.2020.1732232.
-
[3]
World Health Organization. Novel coronavirus (2019-nCoV) situation report -11[EB/OL]. (2020−01−31)[2020−08−01]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-sitrep-11-ncov.pdf?sfvrsn=de7c0f7_4.
-
[4]
Liu NN, Tan JC, Li JQ, et al. COVID-19 Pandemic: experiences in China and implications for its prevention and treatment worldwide[J]. Curr Cancer Drug Targets, 2020,20(6):410–416. DOI:10.2174/1568009620666200414151419.
-
[5]
World Health Organization. Coronavirus disease (COVID-19) situation report -197[EB/OL]. (2020−08−04)[2020−08−05]. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200804-covid-19-sitrep-197.pdf?sfvrsn=94f7a01d_2.
-
[6]
Kamel Boulos MN, Geraghty EM. Geographical tracking and mapping of coronavirus disease COVID-19/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic and associated events around the world: how 21st century GIS technologies are supporting the global fight against outbreaks and epidemics[J]. Int J Health Geogr, 2020,19(1):8. DOI:10.1186/s12942−020−00202−8.
-
[7]
时涛, 李士雪. 地理加权回归模型在卫生经济领域的应用举例: 基于Arc GIS 10.4软件介绍[J]. 中国卫生经济,2018,37(10):10–14. DOI:10.7664/CHE20181002.
Shi T, Li SX. Application of geographically weighted regression model (GWR) in the economics of health and health care: based on the introduction of arc GIS 10.4[J]. Chin Health Econ, 2018,37(10):10–14. DOI:10.7664/CHE20181002. -
[8]
肖雄, 杨长虹, 谭柯, 等. 地理加权回归模型在传染病空间分析中的应用[J]. 中国卫生统计,2013,30(6):833–836, 841.
Xiao X, Yang CH, Tan K, et al. A study on the application of geographically weighted regression model in spatial analysis of infectious disease[J]. Chin J Health Stat, 2013,30(6):833–836, 841. -
[9]
张人杰, 李娜, 王笑笑, 等. 2013-2016年浙江省人感染H7N9禽流感疫情的空间分析及回归模型构建[J]. 疾病监测,2019,34(1):15–20. DOI:10.3784/j.issn.1003−9961.2019.01.006.
Zhang RJ, Li N, Wang XX, et al. Spatial analysis and mathematical modeling of human infection with avian influenza A (H7N9) virus in Zhejiang, 2013–2016[J]. Dis Surveill, 2019,34(1):15–20. DOI:10.3784/j.issn.1003−9961.2019.01.006. -
[10]
Zhang YJ, Liu MY, Wu SS, et al. Spatial distribution of tuberculosis and its association with meteorological factors in mainland China[J]. BMC Infect Dis, 2019,19(1):379. DOI:10.1186/s12879−019−4008−1.
-
[11]
张延炀, 肖占沛, 杨凯朝, 等. 河南省新型冠状病毒肺炎时空聚集性[J]. 中华疾病控制杂志,2020,24(5):534–538, 572. DOI:10.16462/j.cnki.zhjbkz.2020.05.008.
Zhang YY, Xiao ZP, Yang KC, et al. Study on the spatiotemporal clusters of coronavirus disease 2019 in Henan province[J]. Chin J Dis Control Prev, 2020,24(5):534–538, 572. DOI:10.16462/j.cnki.zhjbkz.2020.05.008. -
[12]
蔺茂文, 刘天, 田克卿, 等. 荆州市新型冠状病毒肺炎时空分布特征分析[J]. 上海交通大学学报:医学版,2020,40(5):566–572. DOI:10.3969/j.issn.1674−8115.2020.05.002.
Lin MW, Liu T, Tian KQ, et al. Spatial-temporal distribution of coronavirus disease 2019 in Jingzhou city[J]. J Shanghai Jiaotong Univ (Med Sci), 2020,40(5):566–572. DOI:10.3969/j.issn.1674−8115.2020.05.002. -
[13]
刘蒙, 徐洪吕, 袁敏, 等. 安徽省新型冠状病毒肺炎流行与疫情时空变化分析[J]. 中华预防医学杂志,2020,54(6):630–633. DOI:10.3760/cma.j.cn112150−20200221−00150.
Liu M, Xu HL, Yuan M, et al. Analysis on epidemic situation and spatiotemporal changes of COVID-19 in Anhui[J]. Chin J Prev Med, 2020,54(6):630–633. DOI:10.3760/cma.j.cn112150−20200221−00150. -
[14]
李欣, 周林, 贾涛, 等. 城市因素对COVID-19疫情的影响——以武汉市为例[J]. 武汉大学学报·信息科学版,2020,45(6):826–835. DOI:10.13203/j.whugis20200152.
Li X, Zhou L, Jia T, et al. Influence of urban factors on the COVID-2019 crisis-a case study of Wuhan city[J]. Geomat Inf Sci Wuhan Univ, 2020,45(6):826–835. DOI:10.13203/j.whugis20200152. -
[15]
魏传华, 胡晶, 吴喜之. 空间自相关地理加权回归模型的估计[J]. 数学的实践与认识,2010,40(22):126–134.
Wei CH, Hu J, Wu XZ. Estimation in gegorapically weighted regression with spatial autocorrelation[J]. Math Pract Theory, 2010,40(22):126–134. -
[16]
卢宾宾, 葛咏, 秦昆, 等. 地理加权回归分析技术综述[J]. 武汉大学学报·信息科学版,2020,45(9):1356–1366. DOI:10.13203/j.whugis20190346.
Lu BB, Ge Y, Qin K, et al. A summary on geographically weighted regression[J]. Geomat Inf Sci Wuhan Univ, 2020,45(9):1356–1366. DOI:10.13203/j.whugis20190346. -
[17]
叶子容, 陈佳, 周鼒, 等. 空间回归方法在慢性病研究中的应用进展[J]. 中国卫生统计,2018,35(1):137–141.
Ye ZR, Chen J, Zhou Z, et al. Progress in the application of spatial regression in chronic diseases[J]. Chin J Health Stat, 2018,35(1):137–141. -
[18]
林静静, 张铁威, 李秀央. 疾病时空聚集分析的研究与进展[J]. 中华流行病学杂志,2020,41(7):1165–1170. DOI:10.3760/cma.j.cn112338−20190806−00582.
Lin JJ, Zhang TW, Li XY. Research progress on spatiotemporal clustering of disease[J]. Chin J Epidemiol, 2020,41(7):1165–1170. DOI:10.3760/cma.j.cn112338−20190806−00582. -
[19]
Wu ZY, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention[J]. JAMA, 2020,323(13):1239–1242. DOI:10.1001/jama.2020.2648.
-
[20]
金安楠, 李钢, 王皎贝, 等. 深圳市新型冠状病毒肺炎(COVID-19)疫情时空演化与防控对策[J]. 陕西师范大学学报:自然科学版,2020,48(3):18–32. DOI:10.15983/j.cnki.jsnu.2020.03.017.
Jin AN, Li G, Wang JB, et al. Spatio-temporal evolution and control strategies of COVID-19epidemic in Shenzhen, China[J]. J Shaanxi Normal Univ:Nat Sci Ed, 2020,48(3):18–32. DOI:10.15983/j.cnki.jsnu.2020.03.017. -
[21]
崔芳芳, 何贤英, 高景宏, 等. 河南省1 272例新型冠状病毒肺炎流行病学特征[J]. 中华医院感染学杂志,2020,30(15):2247–2251. DOI:10.11816/cn.ni.2020−200694.
Cui FF, He XY, Gao JH, et al. Epidemiological characteristics of COVID-19 with 1 272 cases in Henan province[J]. Chin J Nosocomiol, 2020,30(15):2247–2251. DOI:10.11816/cn.ni.2020−200694. -
[22]
Chan JF, Yuan SF, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster[J]. Lancet, 2020,395(10223):514–523. DOI:10.1016/S0140−6736(20)30154−9.
-
[23]
Jia JS, Lu X, Yuan Y, et al. Population flow drives spatio-temporal distribution of COVID-19 in China[J]. Nature, 2020,582(7812):389–394. DOI:10.1038/s41586−020−2284−y.
-
[24]
Qiu Y, Chen X, Shi W. Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China[J]. J Popul Econ, 2020:1–46. DOI:10.1007/s00148−020−00778−2.
-
[25]
Chen ZL, Zhang Q, Lu Y, et al. Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China[J]. Chin Med J (Engl)
, 2020,133(9):1044–1050. DOI:10.1097/CM9.0000000000000782. -
[26]
邹旋, 吴永胜, 刘晓剑, 等. 深圳市新型冠状病毒肺炎应急响应策略和措施效果评价[J]. 中华流行病学杂志,2020,41(8):1225–1230. DOI:10.3760/cma.j.cn112338−20200316−00360.
Zou X, Wu YS, Liu XJ, et al. Evaluation of the emergency response strategies and measures on the epidemic of COVID-19 in Shenzhen, China[J]. Chin J Epidemiol, 2020,41(8):1225–1230. DOI:10.3760/cma.j.cn112338−20200316−00360.
-
[1]
-
表 1 中国258个城市新型冠状病毒肺炎发病率空间自相关分析
Table 1. Spatial autocorrelation analysis of COVID-19 incidence rates in 258 cities in China
表 2 中国258个城市新型冠状病毒肺炎发病率线性回归模型分析
Table 2. Linear regression model for COVID-19 incidence rates in 258 cities in China
检验变量 回归系数 标准误 t值 P值 方差膨胀因子 百度迁徙指数 0.547 0.038 14.550 <0.001 1.089 人口密度 <0.001 <0.001 −0.462 0.644 1.978 城市化率 <0.001 0.005 −0.025 0.980 1.638 人均生产总值 <0.001 <0.001 0.686 0.494 2.322 每万人医生数 0.001 0.002 0.601 0.548 1.149 相对纬度 −0.015 0.013 −1.165 0.245 1.294 相对经度 −0.013 0.015 −0.880 0.380 1.537 平均海拔 <0.001 <0.001 0.138 0.890 1.469 -