血流感染病原体分子检测技术研究进展

郑皓 陈小萍 卢金星

引用本文: 郑皓, 陈小萍, 卢金星. 血流感染病原体分子检测技术研究进展[J]. 疾病监测. DOI: 10.3784/j.issn.1003-9961.2020.11.018 shu
Citation:  Hao Zheng, Xiaoping Chen and Jinxing Lu. Progress in research of molecular detection of pathogens in bloodstream infection[J]. Disease Surveillance. DOI: 10.3784/j.issn.1003-9961.2020.11.018 shu

血流感染病原体分子检测技术研究进展

    作者简介: 郑皓,女,北京市人,在读硕士研究生,主要从事院内感染相关病原菌研究工作,Email:zhenghao@icdc.cn;
    通信作者: 陈小萍, chenxiaoping@icdc.cn 卢金星, lujinxing@icdc.cn
  • 基金项目: 国家科技重大专项(No. 2018ZX10733402)

摘要: 血流感染(BSI)的发病率在世界范围内有逐年升高趋势,早期识别与诊断BSI对临床治疗意义重大。 快速诊断BSI的分子学方法分为2类,即全血检测方法和依赖于血培养的检测方法。 与血培养方法相比,全血检测方法缩短了检测时间,可以检测难培养的病原菌,但敏感性仍需提高。 本研究对BSI病原体分子检测技术的研究进展予以综述。

English

    1. [1]

      Napolitano LM. Sepsis 2018: definitions and guideline changes[J]. Surg Infect, 2018,19(2):117–125. DOI:10.1089/sur.2017.278.

    2. [2]

      Mwaigwisya S, Assiri RA, O’Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection[J]. Expert Rev Mol Diagn, 2015,15(5):681–692. DOI:10.1586/14737159.2015.1029459.

    3. [3]

      Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections[J]. BMC Infect Dis, 2014,14:593. DOI:10.1186/s12879−014−0593−1.

    4. [4]

      Chen XC, Yang YF, Wang R, et al. Epidemiology and microbiology of sepsis in mainland China in the first decade of the 21st century[J]. Int J Infect Dis, 2015,31:9–14. DOI:10.1016/j.ijid.2014.11.027.

    5. [5]

      Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis[J]. Crit Care Med, 2014,42(11):2409–2417. DOI:10.1097/CCM.0000000000000509.

    6. [6]

      Martinez RM, Bauerle ER, Fang FC, et al. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures[J]. J Clin Microbiol, 2014,52(7):2521–2529. DOI:10.1128/JCM.00529−14.

    7. [7]

      Hensley DM, Tapia R, Encina Y. An evaluation of the AdvanDx Staphylococcus aureus/CNS PNA FISHTM assay[J]. Clin Lab Sci, 2009,22:30–33.

    8. [8]

      Shepard JR, Addison RM, Alexander BD, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles[J]. J Clin Microbiol, 2008,46:50–55. DOI:10.1128/JCM.01385−07.

    9. [9]

      Deck MK, Anderson ES, Buckner RJ, et al. Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes[J]. J Clin Microbiol, 2012,50(6):1994–1998. DOI:10.1128/JCM.00225−12.

    10. [10]

      Pancholi P, Carroll KC, Buchan BW, et al. Multicenter evaluation of the accelerate PhenoTest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis[J]. J Clin Microbiol, 2018,56(4):e01329–17. DOI:10.1128/JCM.01329−17.

    11. [11]

      Charnot-Katsikas A, Tesic V, Love N, et al. Use of the Accelerate Pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow[J]. J Clin Microbiol, 2017,56(1):e01166–17. DOI:10.1128/JCM.01166−17.

    12. [12]

      Arya M, Shergill IS, Williamson M, et al. Basic principles of real-time quantitative PCR[J]. Expert Rev Mol Diagn, 2005,5(2):209–219. DOI:10.1586/14737159.5.2.209.

    13. [13]

      Elnifro EM, Ashshi AM, Cooper RJ, et al. Multiplex PCR: optimization and application in diagnostic virology[J]. Clin Microbiol Rev, 2000,13(4):559–570. DOI:10.1128/cmr.13.4.559−570.2000.

    14. [14]

      Lee J, Park YJ, Park DJ, et al. Evaluation of bd max staph sr assay for differentiating between staphylococcus aureus and coagulase-negative staphylococci and determining methicillin resistance directly from positive blood cultures[J]. Ann Lab Med, 2017,37(1):39–44. DOI:10.3343/alm.2017.37.1.39.

    15. [15]

      Zboromyrska Y, Cillóniz C, Cobos-Trigueros N, et al. Evaluation of the Magicplex™ sepsis real-time test for the rapid diagnosis of bloodstream infections in adults[J]. Front Cell Infect Microbiol, 2019,9:56. DOI:10.3389/fcimb.2019.00056.

    16. [16]

      Opota O, Croxatto A, Prod'hom G, et al. Blood culture-based diagnosis of bacteraemia: state of the art[J]. Clin Microbiol Infect, 2015,21(4):313–322. DOI:10.1016/j.cmi.2015.01.003.

    17. [17]

      Tissari P, Zumla A, Tarkka E, et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study[J]. Lancet, 2010,375(9710):224–230. DOI:10.1016/S0140−6736(09)61569−5.

    18. [18]

      Aittakorpi A, Kuusela P, Koukila-Kähkölä P, et al. Accurate and rapid identification of Candida spp. frequently associated with fungemia by using PCR and the microarray-based Prove-it Sepsis assay[J]. J Clin Microbiol, 2012,50(11):3635–3640. DOI:10.1128/JCM.01461−12.

    19. [19]

      Lin S, Yang S. Molecular methods for pathogen detection in blood[J]. Lancet, 2010,375(9710):178–179. DOI:10.1016/S0140−6736(09)61791−8.

    20. [20]

      Siu GKH, Chen JHK, Ng TK, et al. Performance evaluation of the verigene gram-positive and gram-negative blood culture test for direct identification of bacteria and their resistance determinants from positive blood cultures in Hong Kong[J]. PLoS One, 2015,10(10):e0139728. DOI:10.1371/journal.pone.0139728.

    21. [21]

      Vareechon C, Mestas J, Polanco CM, et al. A 5-year study of the performance of the Verigene gram-positive blood culture panel in a pediatric hospital[J]. Eur J Clin Microbiol Infect Dis, 2018,37(11):2091–2096. DOI:10.1007/s10096−018−3343−2.

    22. [22]

      Pogue JM, Heil EL, Lephart P, et al. An Antibiotic Stewardship Program (ASP) blueprint for optimizing Verigene BC-GN within an institution: a tale of two cities[J]. Antimicrob Agents Chemother, 2018,62(5):e02538–e17. DOI:10.1128/AAC.02538−17.

    23. [23]

      Beal SG, Ciurca J, Smith G, et al. Evaluation of the nanosphere Verigene gram-positive blood culture assay with the versatrek blood culture system and assessment of possible impact on selected patients[J]. J Clin Microbiol, 2013,51(12):3988–3992. DOI:10.1128/JCM.01889−13.

    24. [24]

      Banerjee R, Teng CB, Cunningham SA, et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing[J]. Clin Infect Dis, 2015,61(7):1071–1080. DOI:10.1093/cid/civ447.

    25. [25]

      Paolucci M, Foschi C, Tamburini MV, et al. Comparison between MALDI-TOF MS and Filmarray blood culture identification panel for rapid identification of yeast from positive blood culture[J]. J Microbiol Methods, 2014,104:92–93. DOI:10.1016/j.mimet.2014.06.018.

    26. [26]

      Szymankiewicz M, Nakonowska B. Rapid detection of bloodstream pathogens in oncologic patients with a filmarray multiplex PCR assay: a comparison with culture methods[J]. Pol J Microbiol, 2018,67(1):103–107. DOI:10.5604/01.3001.0011.6149.

    27. [27]

      Huang TD, Melnik E, Bogaerts P, et al. Evaluation of the ePlex blood culture identification panels for detection of pathogens in bloodstream infections[J]. J Clin Microbiol, 2019,57(2):e01597–18. DOI:10.1128/JCM.01597−18.

    28. [28]

      Burrack-Lange SC, Personne Y, Huber M, et al. Multicenter assessment of the rapid Unyvero Blood Culture molecular assay[J]. J Med Microbiol, 2018,67(9):1294–1301. DOI:10.1099/jmm.0.000804.

    29. [29]

      Lehmann LE, Hunfeld KP, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples[J]. Med Microbiol Immunol, 2008,197(3):313–324. DOI:10.1007/s00430−007−0063−0.

    30. [30]

      Dark P, Blackwood B, Gates S, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis[J]. Intensive Care Med, 2015,41(1):21–33. DOI:10.1007/s00134−014−3553−8.

    31. [31]

      Stevenson M, Pandor A, Martyn-St James M, et al. Sepsis: the LightCycler SeptiFast Test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi - a systematic review and economic evaluation[J]. Health Technol Assess, 2016,20(46):1–246. DOI:10.3310/hta20460.

    32. [32]

      Warhurst G, Dunn G, Chadwick P, et al. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review[J]. Health Technol Assess, 2015,19(35):1–142. DOI:10.3310/hta19350.

    33. [33]

      Maxam AM, Gilbert W. A new method for sequencing DNA[J]. Proc Natl Acad Sci USA, 1977,74(2):560–564. DOI:10.1073/pnas.74.2.560.

    34. [34]

      Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci USA, 1977,74(12):5463–5467. DOI:10.1073/pnas.74.12.5463.

    35. [35]

      Metzker ML. Sequencing technologies - the next generation[J]. Nat Rev Genet, 2010,11(1):31–46. DOI:10.1038/nrg2626.

    36. [36]

      Mancini N, Carletti S, Ghidoli N, et al. The era of molecular and other non-culture-based methods in diagnosis of sepsis[J]. Clin Microbiol Rev, 2010,23(1):235–251. DOI:10.1128/CMR.00043−09.

    37. [37]

      Mühl H, Kochem AJ, Disqué C, et al. Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood[J]. Diagn Microbiol Infect Dis, 2010,66(1):41–49. DOI:10.1016/j.diagmicrobio.2008.07.011.

    38. [38]

      Waggoner JJ, Soda EA, Deresinski S. Rare and emerging viral infections in transplant recipients[J]. Clin Infect Dis, 2013,57(8):1182–1188. DOI:10.1093/cid/cit456.

    39. [39]

      Parize P, Muth E, Richaud C, et al. Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study[J]. Clin Microbiol Infect, 2017,23(8):574.e1–574.e6. DOI:10.1016/j.cmi.2017.02.006.

    40. [40]

      Peker N, Couto N, Sinha B, et al. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches[J]. Clin Microbiol Infect, 2018,24(9):944–955. DOI:10.1016/j.cmi.2018.05.007.

    41. [41]

      Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: rubik's cube of clinical microbiology[J]. Antibiotics (Basel) , 2017,6(4):25. DOI:10.3390/antibiotics6040025.

    42. [42]

      Wang XH, Zhang G, Fan YY, et al. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry[J]. J Microbiol Methods, 2013,92(3):231–235. DOI:10.1016/j.mimet.2012.12.016.

    43. [43]

      Almuhayawi M, Altun O, Abdulmajeed AD, et al. The performance of the four anaerobic blood culture bottles BacT/ALERT-FN, -FN Plus, BACTEC-plus and -lytic in detection of anaerobic bacteria and identification by direct MALDI-TOF MS[J]. PLoS One, 2015,10(11):e0142398. DOI:10.1371/journal.pone.0142398.

    44. [44]

      Ruiz-Aragón J, Ballestero-Téllez M, Gutiérrez-Gutiérrez B, et al. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: a systematic review and Meta-analysis[J]. Enferm Infecc Microbiol Clin, 2018,36(8):484–492. DOI:10.1016/j.eimc.2017.08.012.

    45. [45]

      Hariu M, Watanabe Y, Oikawa N, et al. Usefulness of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify pathogens, including polymicrobial samples, directly from blood culture broths[J]. Infect Drug Resist, 2017,10:115–120. DOI:10.2147/IDR.S132931.

    46. [46]

      Meex C, Neuville F, Descy J, et al. Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction[J]. J Med Microbiol, 2012,61(Pt 11):1511–1516. DOI:10.1099/jmm.0.044750−0.

    47. [47]

      Purighalla S, Esakimuthu S, Reddy M, et al. Discriminatory power of three typing techniques in determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary hospital in India[J]. Indian J Med Microbiol, 2017,35(3):361–368. DOI:10.4103/ijmm.IJMM_16_308.

    48. [48]

      Ecker DJ, Sampath R, Li HJ, et al. New technology for rapid molecular diagnosis of bloodstream infections[J]. Expert Rev Mol Diagn, 2010,10(4):399–415. DOI:10.1586/erm.10.24.

    49. [49]

      Hall TA, Sampath R, Blyn LB, et al. Rapid molecular genotyping and clonal complex assignment of Staphylococcus aureus isolates by PCR coupled to electrospray ionization-mass spectrometry[J]. J Clin Microbiol, 2009,47(6):1733–1741. DOI:10.1128/JCM.02175−08.

    50. [50]

      Neely LA, Audeh M, Phung NA, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood[J]. Sci Transl Med, 2013,5(182):182ra54. DOI:10.1126/scitranslmed.3005377.

    51. [51]

      Nguyen MH, Clancy CJ, Pasculle AW, et al. Performance of the T2Bacteria panel for diagnosing bloodstream infections: a diagnostic accuracy study[J]. Ann Intern Med, 2019,170(12):845–852. DOI:10.7326/M18−2772.

    52. [52]

      Nölling J, Rapireddy S, Amburg JI, et al. Duplex DNA-invading γ-modified peptide nucleic acids enable rapid identification of bloodstream infections in whole blood[J]. mBio, 2016,7(2):e00345–16. DOI:10.1128/mBio.00345−16.

    53. [53]

      Dymicka-Piekarska V, Wasiluk A. Procalcitonin (PCT), contemporary indicator of infection and inflammation[J]. Postepy Hig Med Dosw (Online) , 2015,69:723–728. DOI:10.5604/17322693.1158796.

    54. [54]

      Pan Q, Luo FL, Liu M, et al. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases[J]. J Infect, 2018,77(2):83–98. DOI:10.1016/j.jinf.2018.04.007.

    1. [1]

      郑皓李文革杨海英吴媛车洁陈小萍卢金星 . 脓毒症常见病原菌多重实时PCR检测方法的建立. 疾病监测, 2017, 32(9): 752-756. DOI: 10.3784/j.issn.1003-9961.2017.09.012

    2. [2]

      陈晓丽李文革郑皓陈小萍卢金星 . 基于重组甘露糖结合凝集素蛋白磁珠富集技术检测血流感染新型隐球菌的方法. 疾病监测, 2020, 35(10): 939-945. DOI: 10.3784/j.issn.1003-9961.2020.10.015

    3. [3]

      刘宏卢中秋李萌芳 . 创伤弧菌脓毒症大鼠肝细胞Fas mRNA表达的动态变化研究. 疾病监测, 2009, 24(11): 869-871. DOI: 10.3784/j.issn.1003-9961.2009.11.020

    4. [4]

      楼天正刘宏卢中秋李萌芳 . 创伤弧菌脓毒症大鼠肝细胞Bcl-2 mRNA、Bax mRNA表达的动态变化研究. 疾病监测, 2010, 25(10): 820-823.

    5. [5]

      倪苏娇宋晓玉胥萍瑶 . 2012-2016年四川省肿瘤医院肿瘤患者血流感染病原菌种属分布及耐药性分析. 疾病监测, 2018, 33(12): 1058-1062. DOI: 10.3784/j.issn.1003-9961.2018.12.020

    6. [6]

      韩营营段瑶刁保卫闫梅英 . 利用实时荧光定量聚合酶链式反应快速检测鸭沙门菌. 疾病监测, 2019, 34(4): 307-311. DOI: 10.3784/j.issn.1003-9961.2019.04.007

    7. [7]

      王群李哲赵林王紫鉴赵宏群阚飙逄波 . 基于CRISPR/Cas蛋白的副溶血弧菌检测方法的研究. 疾病监测, 2020, 35(6): 513-517. DOI: 10.3784/j.issn.1003-9961.2020.06.012

    8. [8]

      杜小莉刘九银洪颖王利江良梁陈谨卢昕阚飙周海健崔志刚 . 检测气单胞菌属的SYBR Green荧光PCR方法的建立和评价. 疾病监测, 2020, 35(5): 425-429. DOI: 10.3784/j.issn.1003-9961.2020.05.013

    9. [9]

      陈丹妮韩营营李杰闫梅英 . 利用实时荧光定量聚合酶链式反应快速检测人及动物粪便中的沙门菌. 疾病监测, 2020, 35(2): 151-155. DOI: 10.3784/j.issn.1003-9961.2020.02.015

    10. [10]

      殷启凯陈晓菁付士红刘文婧李樊雷雯雯何英许松涛梁国栋聂凯王环宇 . Koutango病毒TaqMan反转录聚合酶链式反应方法的建立. 疾病监测, 2020, 35(3): 197-201. DOI: 10.3784/j.issn.1003-9961.2020.03.005

    11. [11]

      赵秀芹邓建平连璐璐董海燕张敬蕊李桂莲肖体权李群万康林 . 中国首例脓毒分枝杆菌感染肺病报告. 疾病监测, 2012, 27(6): 497-500. DOI: 10.3784/j.issn.1003-9961.2012.6.023

    12. [12]

      蒋羽李伟范蒙光 . 细菌抗噬菌体感染分子机制. 疾病监测, 2015, 30(8): 679-682. DOI: 10.3784/j.issn.1003-9961.2015.08.017

    13. [13]

      王继东李琴谢平汪圣强肖琛月赵季文徐萃瑜华咏 . STD者病灶部肺炎支原体分子检测与培养分离. 疾病监测, 2002, 17(11): 405-408. DOI: 10.3784/j.issn.1003-9961.2002.11.405

    14. [14]

      郑亚芬承晓京 . 淋病奈瑟菌青霉素、四环素耐药的分子检测. 疾病监测, 2003, 18(2): 51-53. DOI: 10.3784/j.issn.1003-9961.2003.2.51

    15. [15]

      郑亚芬承晓京 . 淋病奈瑟菌青霉素、四环素耐药的分子检测. 疾病监测, 2002, 17(12): 471-473. DOI: 10.3784/j.issn.1003-9961.2002.12.471

    16. [16]

      张顺祥何建凡庄辉张世英扬洪 . 新型肝炎病毒TTV感染状况分子流行病学研究. 疾病监测, 1999, 14(8): 297-299. DOI: 10.3784/j.issn.1003-9961.1999.8.297

    17. [17]

      张姝高红倪红霞胡逢蛟焦素黎 . 夫妻感染HIV-1病毒的分子流行病学研究. 疾病监测, 2010, 25(11): 854-858.

    18. [18]

      吴春利程小雯王昕吕星阳帆房师松吴平芳 . 2009年广东省深圳市B型流感病毒系统进化及分子变异分析. 疾病监测, 2011, 26(6): 442-445. DOI: 10.3784/j.issn.1003-9961.2011.06.008

    19. [19]

      亚红祥王静林张云智 . 云南省狂犬病疫情实验室检测及病毒分子流行病学分析. 疾病监测, 2014, 29(9): 737-740. DOI: 10.3784/j.issn.1003-9961.2014.09.017

    20. [20]

      郑友限刘建忠翁育伟陈炜林碧莲陈明春 . 无菌性脑膜炎暴发中病原学检测及埃柯30型肠道病毒的基因特征和分子进化分析. 疾病监测, 2013, 28(8): 667-671. DOI: 10.3784/j.issn.1003-9961.2013.8.018

  • 表 1  本综述涉及的血流感染病原体快速检测商业化仪器/方法

    Table 1.  Commercial instruments/methods for rapid detection of pathogens in bloodstream infection in this review

    仪器(制造商)原理检测样本检测耐药基因靶点数/方法检测病原菌检测时间操作时间敏感性(%)特异性(%)参考文献
    AdvanDx QuickFISH®
    (AdvanDx,MA)
    FISH血培养0(1)2个革兰阳性菌种靶点
    (2)3个革兰阴性菌种靶点
    (3)肠球菌(粪肠球菌,屎肠球菌或其他肠球菌)
    (4)3个真菌种靶点
    <30 min<5 min(1)97.1~100
    (2)85.8~100
    (3)97.0~98.3
    (4)98.3~100
    (1)89.5~100
    (2)94.8~99.6
    (3)100
    (4)99.4~100
    6, 9
    Accelerate Pheno™ System - PhenoTest™ BC(Accelerate Diagnostics,USA)FISH+MCA血培养MCA鉴定6个属/种革兰阳性球菌,8个属/种革兰阴性杆菌,2种真菌<1.5 h
    (AST
    <7 h)
    2 min88.2~10097.6~1001011
    BD MAX™ MRSA StaphSR(BD,USA)多重荧光定量PCR技术血培养1MSSA,MRSA2 h<1 min97.9~10098.1~10014
    MagicplexTM Sepsis Test(SeeGene,Korea)多重荧光定量PCR技术全血 3属水平检测90余种细菌和真菌(73种革兰阳性菌,12种革兰阴性菌,6种真菌),种水平检测27种细菌和真菌6 h37~6577~9215
    Prove-it™ Sepsis(Mobidiag,Finland)PCR+
    Microarray
    血培养160种细菌,13种真菌3 h94.7~999817
    Luminex nanosphere VERIGENE®(Nanosphere,USA)PCR+
    Microarray
    血培养4(革兰阳性菌);6(革兰阴性菌)13个革兰阳性菌属/种靶点;9个革兰阴性菌属/种靶点2.5 h10 min92.6~98.695.4~99.522
    Biofire® FilmArray® BCID Panel(BioFire Diagnostics,USA)PCR+
    Microarray
    血培养38个革兰阳性菌属/种靶点,11个革兰阴性菌属/种靶点,5个真菌种靶点1 h<5 min89.4~91.61002425
    ePlex® BCID(GenMark Diagnostics,USA)PCR+
    Microarray
    血培养4(革兰阳性菌);6(革兰阴性菌)20个革兰阳性菌属/种靶点,pan-GN,pan-Candida;21个革兰阴性菌属/种靶点,pan-GP,pan-Candida;16个真菌属/种靶点1.5 h<2 min97~9927
    Curetis Unyvero™ BCU(Curetis GmbH,USA)PCR+
    Microarray
    血培养16>50种细菌和真菌(28个细菌属/种靶点,8个真菌属/种靶点)4~5 h<2 min96.899.828
    LightCycler® SeptiFast(Roche Diagnostics,Switzerland)PCR+
    Microarray
    全血 125个细菌和真菌属/种靶点4.5 h68~8665~8629
    sepsiTest®(Molzym,Germany)PCR+
    Sequencing
    全血 0345种细菌和真菌8~12 h878636
    iDTECTTM Dx Blood test(PathoQuest SAS,France)NGS全血 0800种细菌和400种病毒40
    MALDI-TOF MS(Bruker Daltonics,Germany 或 bioMérieux,France)MALDI-TOF MS血培养01 h76~98>9642
    PLEX-ID-BAC Spectrum assay(Abbott,USA)PCR+ESI-MS全血 4800种细菌和真菌6 h839448
    T2Dx® - T2Candida® & T2Bacteria®(T2Biosystems,USA)PCR+NMR全血 0(1)5种真菌
    (2)6种细菌
    3~5 h5 min(1)96.4
    (2)90
    (1)99.4
    (2)90
    51
    PID panel(HelixBind,USA)γPNAs全血 021种细菌和真菌<2.5 h95.589.552
      注:FISH. 荧光原位杂交;MCA. 细胞形态动力学分析;Microarray. 微阵列;NGS. 第二代测序技术;ESI-MS. 电喷雾离子化质谱;NMR. 核磁共振;γPNAs. γ-修饰肽核酸;MSSA. 甲氧西林敏感金黄色葡萄球菌;MRSA. 耐甲氧西林金黄色葡萄球菌;−. 无数据
    下载: 导出CSV

    表 2  血流感染病原体分子学检测方法优缺点

    Table 2.  Advantages and disadvantages of molecular detection of pathogens in bloodstream infection

      方法优  点缺  点
    荧光原位杂交技术无需扩增,不易受血液基质的抑制和污染缺乏抗菌药物敏感性信息
    荧光定量PCR技术灵敏度高,特异性强仪器通道数受限,诊断范围较窄,缺乏抗菌药物敏感性信息
    多重PCR技术成本低,通量高灵敏度和/或特异性较低
    微阵列技术速度快,通量高,可检测多个耐药基因靶点受背景分辨率影响
    第二代测序技术成本低,通量高,可检测多个耐药基因靶点受背景分辨率影响
    质谱技术速度快,通量高对蛋白质的丰度和纯度要求高,数据库需完善
    下载: 导出CSV
  • 0161:血流感染分子检测技术研究进展.docx

    0161:血流感染病原体分子检测技术研究进展.docx

  • 加载中
计量
  • PDF下载量:  16
  • 文章访问数:  906
  • HTML全文浏览量:  388
  • 引证文献数: 0
文章相关
通信作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章

在线交流