仪器(制造商) | 原理 | 检测样本 | 检测耐药基因靶点数/方法 | 检测病原菌 | 检测时间 | 操作时间 | 敏感性(%) | 特异性(%) | 参考文献 |
AdvanDx QuickFISH® (AdvanDx,MA) | FISH | 血培养 | 0 | (1)2个革兰阳性菌种靶点 (2)3个革兰阴性菌种靶点 (3)肠球菌(粪肠球菌,屎肠球菌或其他肠球菌) (4)3个真菌种靶点 | <30 min | <5 min | (1)97.1~100 (2)85.8~100 (3)97.0~98.3 (4)98.3~100 | (1)89.5~100 (2)94.8~99.6 (3)100 (4)99.4~100 | [6, 9] |
Accelerate Pheno™ System - PhenoTest™ BC(Accelerate Diagnostics,USA) | FISH+MCA | 血培养 | MCA鉴定 | 6个属/种革兰阳性球菌,8个属/种革兰阴性杆菌,2种真菌 | <1.5 h (AST <7 h) | 2 min | 88.2~100 | 97.6~100 | [10–11] |
BD MAX™ MRSA StaphSR(BD,USA) | 多重荧光定量PCR技术 | 血培养 | 1 | MSSA,MRSA | 2 h | <1 min | 97.9~100 | 98.1~100 | [14] |
MagicplexTM Sepsis Test(SeeGene,Korea) | 多重荧光定量PCR技术 | 全血 | 3 | 属水平检测90余种细菌和真菌(73种革兰阳性菌,12种革兰阴性菌,6种真菌),种水平检测27种细菌和真菌 | 6 h | − | 37~65 | 77~92 | [15] |
Prove-it™ Sepsis(Mobidiag,Finland) | PCR+ Microarray | 血培养 | 1 | 60种细菌,13种真菌 | 3 h | − | 94.7~99 | 98 | [17] |
Luminex nanosphere VERIGENE®(Nanosphere,USA) | PCR+ Microarray | 血培养 | 4(革兰阳性菌);6(革兰阴性菌) | 13个革兰阳性菌属/种靶点;9个革兰阴性菌属/种靶点 | 2.5 h | 10 min | 92.6~98.6 | 95.4~99.5 | [22] |
Biofire® FilmArray® BCID Panel(BioFire Diagnostics,USA) | PCR+ Microarray | 血培养 | 3 | 8个革兰阳性菌属/种靶点,11个革兰阴性菌属/种靶点,5个真菌种靶点 | 1 h | <5 min | 89.4~91.6 | 100 | [24–25] |
ePlex® BCID(GenMark Diagnostics,USA) | PCR+ Microarray | 血培养 | 4(革兰阳性菌);6(革兰阴性菌) | 20个革兰阳性菌属/种靶点,pan-GN,pan-Candida;21个革兰阴性菌属/种靶点,pan-GP,pan-Candida;16个真菌属/种靶点 | 1.5 h | <2 min | 97~99 | − | [27] |
Curetis Unyvero™ BCU(Curetis GmbH,USA) | PCR+ Microarray | 血培养 | 16 | >50种细菌和真菌(28个细菌属/种靶点,8个真菌属/种靶点) | 4~5 h | <2 min | 96.8 | 99.8 | [28] |
LightCycler® SeptiFast(Roche Diagnostics,Switzerland) | PCR+ Microarray | 全血 | 1 | 25个细菌和真菌属/种靶点 | 4.5 h | − | 68~86 | 65~86 | [29] |
sepsiTest®(Molzym,Germany) | PCR+ Sequencing | 全血 | 0 | 345种细菌和真菌 | 8~12 h | − | 87 | 86 | [36] |
iDTECTTM Dx Blood test(PathoQuest SAS,France) | NGS | 全血 | 0 | 800种细菌和400种病毒 | − | − | − | − | [40] |
MALDI-TOF MS(Bruker Daltonics,Germany 或 bioMérieux,France) | MALDI-TOF MS | 血培养 | 0 | − | 1 h | − | 76~98 | >96 | [42] |
PLEX-ID-BAC Spectrum assay(Abbott,USA) | PCR+ESI-MS | 全血 | 4 | 800种细菌和真菌 | 6 h | − | 83 | 94 | [48] |
T2Dx® - T2Candida® & T2Bacteria®(T2Biosystems,USA) | PCR+NMR | 全血 | 0 | (1)5种真菌 (2)6种细菌 | 3~5 h | 5 min | (1)96.4 (2)90 | (1)99.4 (2)90 | [51] |
PID panel(HelixBind,USA) | γPNAs | 全血 | 0 | 21种细菌和真菌 | <2.5 h | − | 95.5 | 89.5 | [52] |
注:FISH. 荧光原位杂交;MCA. 细胞形态动力学分析;Microarray. 微阵列;NGS. 第二代测序技术;ESI-MS. 电喷雾离子化质谱;NMR. 核磁共振;γPNAs. γ-修饰肽核酸;MSSA. 甲氧西林敏感金黄色葡萄球菌;MRSA. 耐甲氧西林金黄色葡萄球菌;−. 无数据 |

Citation: Hao Zheng, Xiaoping Chen and Jinxing Lu. Progress in research of molecular detection of pathogens in bloodstream infection[J]. Disease Surveillance. DOI: 10.3784/j.issn.1003-9961.2020.11.018

血流感染病原体分子检测技术研究进展
English
Progress in research of molecular detection of pathogens in bloodstream infection
-
Key words:
- Bloodstream infection /
- Sepsis /
- Molecular detection
-
-
[1]
Napolitano LM. Sepsis 2018: definitions and guideline changes[J]. Surg Infect, 2018,19(2):117–125. DOI:10.1089/sur.2017.278.
-
[2]
Mwaigwisya S, Assiri RA, O’Grady J. Emerging commercial molecular tests for the diagnosis of bloodstream infection[J]. Expert Rev Mol Diagn, 2015,15(5):681–692. DOI:10.1586/14737159.2015.1029459.
-
[3]
Burillo A, Bouza E. Use of rapid diagnostic techniques in ICU patients with infections[J]. BMC Infect Dis, 2014,14:593. DOI:10.1186/s12879−014−0593−1.
-
[4]
Chen XC, Yang YF, Wang R, et al. Epidemiology and microbiology of sepsis in mainland China in the first decade of the 21st century[J]. Int J Infect Dis, 2015,31:9–14. DOI:10.1016/j.ijid.2014.11.027.
-
[5]
Weiss SL, Fitzgerald JC, Balamuth F, et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis[J]. Crit Care Med, 2014,42(11):2409–2417. DOI:10.1097/CCM.0000000000000509.
-
[6]
Martinez RM, Bauerle ER, Fang FC, et al. Evaluation of three rapid diagnostic methods for direct identification of microorganisms in positive blood cultures[J]. J Clin Microbiol, 2014,52(7):2521–2529. DOI:10.1128/JCM.00529−14.
-
[7]
Hensley DM, Tapia R, Encina Y. An evaluation of the AdvanDx Staphylococcus aureus/CNS PNA FISHTM assay[J]. Clin Lab Sci, 2009,22:30–33.
-
[8]
Shepard JR, Addison RM, Alexander BD, et al. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles[J]. J Clin Microbiol, 2008,46:50–55. DOI:10.1128/JCM.01385−07.
-
[9]
Deck MK, Anderson ES, Buckner RJ, et al. Multicenter evaluation of the Staphylococcus QuickFISH method for simultaneous identification of Staphylococcus aureus and coagulase-negative staphylococci directly from blood culture bottles in less than 30 minutes[J]. J Clin Microbiol, 2012,50(6):1994–1998. DOI:10.1128/JCM.00225−12.
-
[10]
Pancholi P, Carroll KC, Buchan BW, et al. Multicenter evaluation of the accelerate PhenoTest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis[J]. J Clin Microbiol, 2018,56(4):e01329–17. DOI:10.1128/JCM.01329−17.
-
[11]
Charnot-Katsikas A, Tesic V, Love N, et al. Use of the Accelerate Pheno system for identification and antimicrobial susceptibility testing of pathogens in positive blood cultures and impact on time to results and workflow[J]. J Clin Microbiol, 2017,56(1):e01166–17. DOI:10.1128/JCM.01166−17.
-
[12]
Arya M, Shergill IS, Williamson M, et al. Basic principles of real-time quantitative PCR[J]. Expert Rev Mol Diagn, 2005,5(2):209–219. DOI:10.1586/14737159.5.2.209.
-
[13]
Elnifro EM, Ashshi AM, Cooper RJ, et al. Multiplex PCR: optimization and application in diagnostic virology[J]. Clin Microbiol Rev, 2000,13(4):559–570. DOI:10.1128/cmr.13.4.559−570.2000.
-
[14]
Lee J, Park YJ, Park DJ, et al. Evaluation of bd max staph sr assay for differentiating between staphylococcus aureus and coagulase-negative staphylococci and determining methicillin resistance directly from positive blood cultures[J]. Ann Lab Med, 2017,37(1):39–44. DOI:10.3343/alm.2017.37.1.39.
-
[15]
Zboromyrska Y, Cillóniz C, Cobos-Trigueros N, et al. Evaluation of the Magicplex™ sepsis real-time test for the rapid diagnosis of bloodstream infections in adults[J]. Front Cell Infect Microbiol, 2019,9:56. DOI:10.3389/fcimb.2019.00056.
-
[16]
Opota O, Croxatto A, Prod'hom G, et al. Blood culture-based diagnosis of bacteraemia: state of the art[J]. Clin Microbiol Infect, 2015,21(4):313–322. DOI:10.1016/j.cmi.2015.01.003.
-
[17]
Tissari P, Zumla A, Tarkka E, et al. Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study[J]. Lancet, 2010,375(9710):224–230. DOI:10.1016/S0140−6736(09)61569−5.
-
[18]
Aittakorpi A, Kuusela P, Koukila-Kähkölä P, et al. Accurate and rapid identification of Candida spp. frequently associated with fungemia by using PCR and the microarray-based Prove-it Sepsis assay[J]. J Clin Microbiol, 2012,50(11):3635–3640. DOI:10.1128/JCM.01461−12.
-
[19]
Lin S, Yang S. Molecular methods for pathogen detection in blood[J]. Lancet, 2010,375(9710):178–179. DOI:10.1016/S0140−6736(09)61791−8.
-
[20]
Siu GKH, Chen JHK, Ng TK, et al. Performance evaluation of the verigene gram-positive and gram-negative blood culture test for direct identification of bacteria and their resistance determinants from positive blood cultures in Hong Kong[J]. PLoS One, 2015,10(10):e0139728. DOI:10.1371/journal.pone.0139728.
-
[21]
Vareechon C, Mestas J, Polanco CM, et al. A 5-year study of the performance of the Verigene gram-positive blood culture panel in a pediatric hospital[J]. Eur J Clin Microbiol Infect Dis, 2018,37(11):2091–2096. DOI:10.1007/s10096−018−3343−2.
-
[22]
Pogue JM, Heil EL, Lephart P, et al. An Antibiotic Stewardship Program (ASP) blueprint for optimizing Verigene BC-GN within an institution: a tale of two cities[J]. Antimicrob Agents Chemother, 2018,62(5):e02538–e17. DOI:10.1128/AAC.02538−17.
-
[23]
Beal SG, Ciurca J, Smith G, et al. Evaluation of the nanosphere Verigene gram-positive blood culture assay with the versatrek blood culture system and assessment of possible impact on selected patients[J]. J Clin Microbiol, 2013,51(12):3988–3992. DOI:10.1128/JCM.01889−13.
-
[24]
Banerjee R, Teng CB, Cunningham SA, et al. Randomized trial of rapid multiplex polymerase chain reaction-based blood culture identification and susceptibility testing[J]. Clin Infect Dis, 2015,61(7):1071–1080. DOI:10.1093/cid/civ447.
-
[25]
Paolucci M, Foschi C, Tamburini MV, et al. Comparison between MALDI-TOF MS and Filmarray blood culture identification panel for rapid identification of yeast from positive blood culture[J]. J Microbiol Methods, 2014,104:92–93. DOI:10.1016/j.mimet.2014.06.018.
-
[26]
Szymankiewicz M, Nakonowska B. Rapid detection of bloodstream pathogens in oncologic patients with a filmarray multiplex PCR assay: a comparison with culture methods[J]. Pol J Microbiol, 2018,67(1):103–107. DOI:10.5604/01.3001.0011.6149.
-
[27]
Huang TD, Melnik E, Bogaerts P, et al. Evaluation of the ePlex blood culture identification panels for detection of pathogens in bloodstream infections[J]. J Clin Microbiol, 2019,57(2):e01597–18. DOI:10.1128/JCM.01597−18.
-
[28]
Burrack-Lange SC, Personne Y, Huber M, et al. Multicenter assessment of the rapid Unyvero Blood Culture molecular assay[J]. J Med Microbiol, 2018,67(9):1294–1301. DOI:10.1099/jmm.0.000804.
-
[29]
Lehmann LE, Hunfeld KP, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples[J]. Med Microbiol Immunol, 2008,197(3):313–324. DOI:10.1007/s00430−007−0063−0.
-
[30]
Dark P, Blackwood B, Gates S, et al. Accuracy of LightCycler® SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis[J]. Intensive Care Med, 2015,41(1):21–33. DOI:10.1007/s00134−014−3553−8.
-
[31]
Stevenson M, Pandor A, Martyn-St James M, et al. Sepsis: the LightCycler SeptiFast Test MGRADE®, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi - a systematic review and economic evaluation[J]. Health Technol Assess, 2016,20(46):1–246. DOI:10.3310/hta20460.
-
[32]
Warhurst G, Dunn G, Chadwick P, et al. Rapid detection of health-care-associated bloodstream infection in critical care using multipathogen real-time polymerase chain reaction technology: a diagnostic accuracy study and systematic review[J]. Health Technol Assess, 2015,19(35):1–142. DOI:10.3310/hta19350.
-
[33]
Maxam AM, Gilbert W. A new method for sequencing DNA[J]. Proc Natl Acad Sci USA, 1977,74(2):560–564. DOI:10.1073/pnas.74.2.560.
-
[34]
Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors[J]. Proc Natl Acad Sci USA, 1977,74(12):5463–5467. DOI:10.1073/pnas.74.12.5463.
-
[35]
Metzker ML. Sequencing technologies - the next generation[J]. Nat Rev Genet, 2010,11(1):31–46. DOI:10.1038/nrg2626.
-
[36]
Mancini N, Carletti S, Ghidoli N, et al. The era of molecular and other non-culture-based methods in diagnosis of sepsis[J]. Clin Microbiol Rev, 2010,23(1):235–251. DOI:10.1128/CMR.00043−09.
-
[37]
Mühl H, Kochem AJ, Disqué C, et al. Activity and DNA contamination of commercial polymerase chain reaction reagents for the universal 16S rDNA real-time polymerase chain reaction detection of bacterial pathogens in blood[J]. Diagn Microbiol Infect Dis, 2010,66(1):41–49. DOI:10.1016/j.diagmicrobio.2008.07.011.
-
[38]
Waggoner JJ, Soda EA, Deresinski S. Rare and emerging viral infections in transplant recipients[J]. Clin Infect Dis, 2013,57(8):1182–1188. DOI:10.1093/cid/cit456.
-
[39]
Parize P, Muth E, Richaud C, et al. Untargeted next-generation sequencing-based first-line diagnosis of infection in immunocompromised adults: a multicentre, blinded, prospective study[J]. Clin Microbiol Infect, 2017,23(8):574.e1–574.e6. DOI:10.1016/j.cmi.2017.02.006.
-
[40]
Peker N, Couto N, Sinha B, et al. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches[J]. Clin Microbiol Infect, 2018,24(9):944–955. DOI:10.1016/j.cmi.2018.05.007.
-
[41]
Gajdács M, Spengler G, Urbán E. Identification and antimicrobial susceptibility testing of anaerobic bacteria: rubik's cube of clinical microbiology[J]. Antibiotics (Basel)
, 2017,6(4):25. DOI:10.3390/antibiotics6040025. -
[42]
Wang XH, Zhang G, Fan YY, et al. Direct identification of bacteria causing urinary tract infections by combining matrix-assisted laser desorption ionization-time of flight mass spectrometry with UF-1000i urine flow cytometry[J]. J Microbiol Methods, 2013,92(3):231–235. DOI:10.1016/j.mimet.2012.12.016.
-
[43]
Almuhayawi M, Altun O, Abdulmajeed AD, et al. The performance of the four anaerobic blood culture bottles BacT/ALERT-FN, -FN Plus, BACTEC-plus and -lytic in detection of anaerobic bacteria and identification by direct MALDI-TOF MS[J]. PLoS One, 2015,10(11):e0142398. DOI:10.1371/journal.pone.0142398.
-
[44]
Ruiz-Aragón J, Ballestero-Téllez M, Gutiérrez-Gutiérrez B, et al. Direct bacterial identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry: a systematic review and Meta-analysis[J]. Enferm Infecc Microbiol Clin, 2018,36(8):484–492. DOI:10.1016/j.eimc.2017.08.012.
-
[45]
Hariu M, Watanabe Y, Oikawa N, et al. Usefulness of matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify pathogens, including polymicrobial samples, directly from blood culture broths[J]. Infect Drug Resist, 2017,10:115–120. DOI:10.2147/IDR.S132931.
-
[46]
Meex C, Neuville F, Descy J, et al. Direct identification of bacteria from BacT/ALERT anaerobic positive blood cultures by MALDI-TOF MS: MALDI Sepsityper kit versus an in-house saponin method for bacterial extraction[J]. J Med Microbiol, 2012,61(Pt 11):1511–1516. DOI:10.1099/jmm.0.044750−0.
-
[47]
Purighalla S, Esakimuthu S, Reddy M, et al. Discriminatory power of three typing techniques in determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary hospital in India[J]. Indian J Med Microbiol, 2017,35(3):361–368. DOI:10.4103/ijmm.IJMM_16_308.
-
[48]
Ecker DJ, Sampath R, Li HJ, et al. New technology for rapid molecular diagnosis of bloodstream infections[J]. Expert Rev Mol Diagn, 2010,10(4):399–415. DOI:10.1586/erm.10.24.
-
[49]
Hall TA, Sampath R, Blyn LB, et al. Rapid molecular genotyping and clonal complex assignment of Staphylococcus aureus isolates by PCR coupled to electrospray ionization-mass spectrometry[J]. J Clin Microbiol, 2009,47(6):1733–1741. DOI:10.1128/JCM.02175−08.
-
[50]
Neely LA, Audeh M, Phung NA, et al. T2 magnetic resonance enables nanoparticle-mediated rapid detection of candidemia in whole blood[J]. Sci Transl Med, 2013,5(182):182ra54. DOI:10.1126/scitranslmed.3005377.
-
[51]
Nguyen MH, Clancy CJ, Pasculle AW, et al. Performance of the T2Bacteria panel for diagnosing bloodstream infections: a diagnostic accuracy study[J]. Ann Intern Med, 2019,170(12):845–852. DOI:10.7326/M18−2772.
-
[52]
Nölling J, Rapireddy S, Amburg JI, et al. Duplex DNA-invading γ-modified peptide nucleic acids enable rapid identification of bloodstream infections in whole blood[J]. mBio, 2016,7(2):e00345–16. DOI:10.1128/mBio.00345−16.
-
[53]
Dymicka-Piekarska V, Wasiluk A. Procalcitonin (PCT), contemporary indicator of infection and inflammation[J]. Postepy Hig Med Dosw (Online)
, 2015,69:723–728. DOI:10.5604/17322693.1158796. -
[54]
Pan Q, Luo FL, Liu M, et al. Oligonucleotide aptamers: promising and powerful diagnostic and therapeutic tools for infectious diseases[J]. J Infect, 2018,77(2):83–98. DOI:10.1016/j.jinf.2018.04.007.
-
[1]
-
表 1 本综述涉及的血流感染病原体快速检测商业化仪器/方法
Table 1. Commercial instruments/methods for rapid detection of pathogens in bloodstream infection in this review
表 2 血流感染病原体分子学检测方法优缺点
Table 2. Advantages and disadvantages of molecular detection of pathogens in bloodstream infection
方法 优 点 缺 点 荧光原位杂交技术 无需扩增,不易受血液基质的抑制和污染 缺乏抗菌药物敏感性信息 荧光定量PCR技术 灵敏度高,特异性强 仪器通道数受限,诊断范围较窄,缺乏抗菌药物敏感性信息 多重PCR技术 成本低,通量高 灵敏度和/或特异性较低 微阵列技术 速度快,通量高,可检测多个耐药基因靶点 受背景分辨率影响 第二代测序技术 成本低,通量高,可检测多个耐药基因靶点 受背景分辨率影响 质谱技术 速度快,通量高 对蛋白质的丰度和纯度要求高,数据库需完善 -

计量
- PDF下载量: 16
- 文章访问数: 905
- HTML全文浏览量: 388
- 引证文献数: 0