基于系统综述的新型冠状病毒肺炎与2009年H1N1流感大流行基本传染数研究

陈嘉敏 邱增钊 钟舒怡 文思敏 舒跃龙

引用本文: 陈嘉敏, 邱增钊, 钟舒怡, 文思敏, 舒跃龙. 基于系统综述的COVID-19与2009年H1N1流感大流行基本传染数研究[J]. 疾病监测. shu
Citation:  Jiamin Chen, Zengzhao Qiu, Shuyi Zhong, Simin Wen and yuelong Shu. Study of R0 of COVID-19 and pandemic influenza A (H1N1) 2009 based on systematic review[J]. Disease Surveillance. shu

基于系统综述的新型冠状病毒肺炎与2009年H1N1流感大流行基本传染数研究

    作者简介: 陈嘉敏,女,广东省云浮市人,硕士研究生,主要从事病原与传染病防控研究工作,Email:chenjm257@mail2.sysu.edu.cn;邱增钊,男,广东省梅州市人,硕士研究生,主要从事病原与传染病防控研究工作,Email:qiuzzh5@mail2.sysu.edu.cn;
    通信作者: 舒跃龙, shuylong@mail.sysu.edu.cn
  • 基金项目: 深圳市科技计划项目(No.KQTD20180411143323605)

摘要: 目的通过系统综述方法,基于基本传染数(R0)比较新型冠状病毒肺炎(COVID-19)与2009年 H1N1流感大流行的传播能力。方法通过检索中国知网、万方数据库、维普数据库、PubMed、Embase、Web of Science、BioRxiv和MedRxiv数据库,2名审查员对COVID-19和2009年H1N1流感大流行的R0相关研究进行独立筛选、提取数据和计算,并对提取的2次疫情的R0进行系统性总结和比较。结果共纳入164篇文献(包括54篇2009年甲型H1N1流感大流行相关文章和110篇COVID-19相关文章)。 COVID-19在世界流行的R0中位数为2.860(四分位数范围IQR: 2.350~3.560),高于2009年H1N1流感大流行的R0中位数(1.508,IQR: 1.336~1.836)。 中国COVID-19的R0中位数为2.930(IQR: 2.215~3.453),施行严格交通管制前COVID-19的R0中位数为3.430(IQR: 2.500~4.710),高于之后的2.500(IQR: 1.673~3.030)。结论COVID-19的传播能力强于2009年甲型H1N1流感。 中国采取严格交通管制措施后,能够减缓COVID-19的传播。

English

    1. [1]

      World Health Organization. WHO announces COVID-19 outbreak a pandemic[EB/OL]. (2020−03−12)[2020−07−31]. http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic.

    2. [2]

      World Health Organization. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update[EB/OL]. (2020−07−05)[2020−07−31]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.

    3. [3]

      Ibrahim K, Burt BM. The importance of R0[J]. J Thorac Cardiovasc Surg, 2018,155(1):428–429. DOI:10.1016/j.jtcvs.2017.09.064.

    4. [4]

      Delamater PL, Street EJ, Leslie TF, et al. Complexity of the basic reproduction number (R0)[J]. Emerg InfectDis, 2019,25(1):1–4. DOI:10.3201/eid2501.171901.

    5. [5]

      Balcan D, Hu H, Goncalves B, et al. Seasonal transmission potential and activity peaks of the new influenza A (H1N1): a Monte Carlo likelihood analysis based on human mobility[J]. BMC Med, 2009,7:45. DOI:10.1186/1741−7015−7−45.

    6. [6]

      Barakat A, Ihazmad H, El Falaki F, et al. 2009 Pandemic influenza A virus subtype H1N1 in Morocco, 2009–2010: epidemiology, transmissibility, and factors associated with fatal cases[J]. J Infect Dis, 2012,206(S1):S94–S100. DOI:10.1093/infdis/jis547.

    7. [7]

      De Blasio BF, Iversen BG, Tomba GS. Effect of vaccines and antivirals during the major 2009 A(H1N1) pandemic wave in Norway-and the influence of vaccination timing[J]. PLoS One, 2012,7(1):e30018. DOI:10.1371/journal.pone.0030018.

    8. [8]

      Buckley D, Bulger D. Estimation of the reproductive number for the 2009 pandemic H1N1 influenza in rural and metropolitan New South Wales[J]. Aust J Rural Health, 2011,19(2):59–63. DOI:10.1111/j.1440−1584.2011.01184.x.

    9. [9]

      Bilge AH, Samanlioglu F. Determination of epidemic parameters from early phase fatality data: A case study of the 2009 A (H1N1) pandemic in Europe[J]. Int J Biomathemat, 2018,11(2):1850021. DOI:10.1142/S1793524518500213.

    10. [10]

      Chang CY, Cao CX, Wang Q, et al. The novel H1N1 Influenza A global airline transmission and early warning without travel containments[J]. Chin Sci Bull, 2010,55(26):3030–3036. DOI:10.1007/s11434−010−3180−x.

    11. [11]

      Chao DY, Cheng KF, Li TC, et al. Serological evidence of subclinical transmission of the 2009 pandemic H1N1 influenza virus outside of Mexico[J]. PLoS One, 2011,6(1):e14555. DOI:10.1371/journal.pone.0014555.

    12. [12]

      陈田木, 刘如春, 谭爱春, 等. 隔离患者对控制学校甲型H1N1流感暴发疫情效果的数学模拟[J]. 中国卫生统计,2014,31(3):390–394.
      Chen TM, Liu RC, Tan AC, et al. Mathematical simulation of the effect of isolation on influenza A(H1N1) outbreak at school[J]. Chin J Health Stat, 2014,31(3):390–394.

    13. [13]

      陈田木, 刘如春, 张锡兴, 等. 长沙市甲型H1N1流感流行干预措施效果的数学模拟[J]. 中国卫生统计,2015,32(2):205–210.
      Chen TM, Liu RC, Zhang XX, et al. Simulating the effects of intervention strategies on the epidemic of influenza A(H1N1) using dynamic model in Changsha city[J]. Chin J Health Stat, 2015,32(2):205–210.

    14. [14]

      Chong KC, Zee BCY, Wang MH. Approximate Bayesian algorithm to estimate the basic reproduction number in an influenza pandemic using arrival times of imported cases[J]. Travel Med Infect Dis, 2018,23:80–86. DOI:10.1016/j.tmaid.2018.04.004.

    15. [15]

      Chong KC, Zee BCY, Wang MH. A statistical method utilizing information of imported cases to estimate the transmissibility for an influenza pandemic[J]. BMC Med Res Methodol, 2017,17:31. DOI:10.1186/s12874−017−0300−1.

    16. [16]

      Chowell G, Towers S, Viboud C, et al. The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile[J]. BMC Infect Dis, 2012,12:298. DOI:10.1186/1471−2334−12−298.

    17. [17]

      Clamer V, Dorigatti I, Fumanelli L, et al. Estimating transmission probability in schools for the 2009 H1N1 influenza pandemic in Italy[J]. Theor Biol Med Model, 2016,13:19. DOI:10.1186/s12976−016−0045−2.

    18. [18]

      De Silva UC, Warachit J, Waicharoen S, et al. A preliminary analysis of the epidemiology of influenza A(H1N1)v virus infection in Thailand from early outbreak data, June-July 2009[J]. Euro Surveill, 2009,14(31):19292. DOI:10.2807/ese.14.31.19292−en.

    19. [19]

      Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic potential of a strain of influenza A (H1N1): early findings[J]. Science, 2009,324(5934):1557–1561. DOI:10.1126/science.1176062.

    20. [20]

      Furushima D, Kawano S, Ohno Y, et al. Estimation of the basic reproduction number of novel influenza A (H1N1) pdm09 in elementary schools using the SIR model[J]. Open Nurs J, 2017,11:64–72. DOI:10.2174/1874434601711010064.

    21. [21]

      Gani SR, Ali ST, Kadi AS. The transmission dynamics of pandemic influenza A/H1N1 2009–2010 in India[J]. Curr Sci, 2011,101(8):1065–1072.

    22. [22]

      Haghdoost A, Baneshi MR, Zolala F, et al. Estimation of basic reproductive number of flu-like syndrome in a primary school in Iran[J]. Int J Prev Med, 2012,3(6):408–413.

    23. [23]

      Hedge J, Lycett SJ, Rambaut A. Real-time characterization of the molecular epidemiology of an influenza pandemic[J]. Biol Lett, 2013,9(5):20130331. DOI:10.1098/rsbl.2013.0331.

    24. [24]

      Hsieh YH, Fisman DN, Wu JH. On epidemic modeling in real time: An application to the 2009 novel A (H1N1) influenza outbreak in Canada[J]. BMC Res Notes, 2010,3:283. DOI:10.1186/1756−0500−3−283.

    25. [25]

      Hsieh YH, Ma SF, Hernandez JXV, et al. Early outbreak of 2009 Influenza A (H1N1) in mexico prior to identification of pH1N1 virus[J]. PLoS One, 2011,6(8):e23853. DOI:10.1371/journal.pone.0023853.

    26. [26]

      Inglis NJ, Bagnall H, Janmohamed K, et al. Measuring the effect of influenza A(H1N1)pdm09: the epidemiological experience in the West Midlands, England during the “containment” phase[J]. Epidemiol Infect, 2014,142(2):428–437. DOI:10.1017/S0950268813001234.

    27. [27]

      Jin Z, Zhang JP, Song LP, et al. Modelling and analysis of influenza A (H1N1) on networks[J]. BMC Public Health, 2011,11(S1):S9. DOI:10.1186/1471−2458−11−S1−S9.

    28. [28]

      Jongcherdchootrakul K, Henderson AK, Iamsirithaworn S, et al. First pandemic A (H1N1) pdm09 outbreak in a private school, Bangkok, Thailand, June 2009[J]. J Med Assoc Thai, 2014,97 Suppl 2:S145–152.

    29. [29]

      Kim K, Omori R, Ito K. Inferring epidemiological dynamics of infectious diseases using Tajima's D statistic on nucleotide sequences of pathogens[J]. Epidemics, 2017,21:21–29. DOI:10.1016/j.epidem.2017.04.004.

    30. [30]

      Kwok KO, Davoudi B, Riley S, et al. Early real-time estimation of the basic reproduction number of emerging or reemerging infectious diseases in a community with heterogeneous contact pattern: Using data from Hong Kong 2009 H1N1 pandemic influenza as an illustrative example[J]. PLoS One, 2015,10(9):e0137959. DOI:10.1371/journal.pone.0137959.

    31. [31]

      Cámara AL, Jiménez-Jorge S, Ontañón SDM, et al. Epidemiology of the 2009 influenza pandemic in Spain. The Spanish influenza surveillance system[J]. Enfermed Infecc Microbiol Clin, 2012,30(suppl 4):2–9. DOI:10.1016/S0213−005X(12)70098−8.

    32. [32]

      Liu RC, Leung RKK, Chen TM, et al. The effectiveness of age-specific isolation policies on epidemics of influenza A (H1N1) in a large city in central south China[J]. PLoS One, 2015,10(7):e0132588. DOI:10.1371/journal.pone.0132588.

    33. [33]

      Liu WD, Tang SY, Xiao YN. Model selection and evaluation based on emerging infectious disease data sets including A/H1N1 and ebola[J]. Comput Math Methods Med, 2015,2015:207105. DOI:10.1155/2015/207105.

    34. [34]

      Modchang C, Iamsirithaworn S, Auewarakul P, et al. A modeling study of school closure to reduce influenza transmission: A case study of an influenza A (H1N1) outbreak in a private Thai school[J]. Mathemat Comp Modell, 2012,55(3/4):1021–1033. DOI:10.1016/j.mcm.2011.09.027.

    35. [35]

      Mostaço-Guidolin LC, Bowman CS, Greer AL, et al. Transmissibility of the 2009 H1N1 pandemic in remote and isolated Canadian communities: a modelling study[J]. BMJ Open, 2012,2(5):e001614. DOI:10.1136/bmjopen−2012−001614.

    36. [36]

      Mostaço-Guidolin LC, Greer A, Sander B, et al. Variability in transmissibility of the 2009 H1N1 pandemic in Canadian communities[J]. BMC Res Notes, 2011,4:537. DOI:10.1186/1756−0500−4−537.

    37. [37]

      Munasinghe L, Asai Y, Nishiura H. Quantifying heterogeneous contact patterns in Japan: a social contact survey[J]. Theor Biol Med Model, 2019,16:6. DOI:10.1186/s12976−019−0102−8.

    38. [38]

      Nikbakht R, Baneshi MR, Bahrampour A, et al. Comparison of methods to estimate basic reproduction number (R0) of influenza, using Canada 2009 and 2017-18 A (H1N1) data[J]. J Res Med Sci, 2019,24:67. DOI:10.4103/jrms.JRMS_888_18.

    39. [39]

      Opatowski L, Fraser C, Griffin J, et al. Transmission characteristics of the 2009 H1N1 influenza pandemic: comparison of 8 southern hemisphere countries[J]. PLoS Pathog, 2011,7(9):e1002225. DOI:10.1371/journal.ppat.1002225.

    40. [40]

      Rezaianzadeh A, Tabatabaee HR, Moghadami M, et al. Calculation of reproductive number using data from H1N1 patients in Fars province, Southern Iran[J]. Iran Red Crescent Med J, 2011,13(5):334–337.

    41. [41]

      Riley P, Ben-Nun M, Armenta R, et al. Multiple estimates of transmissibility for the 2009 influenza pandemic based on influenza-like-illness data from small US military populations[J]. PLoS Comput Biol, 2013,9(5):e1003064. DOI:10.1371/journal.pcbi.1003064.

    42. [42]

      Shen JY, Niu JJ. Epidemiologic parameters and evaluation of control measure for 2009 novel influenza a (H1N1) in Xiamen, Fujian province, China[J]. Virol J, 2012,9:20. DOI:10.1186/1743−422X−9−20.

    43. [43]

      Shil P, Gurav YK, Chadha MS, et al. Transmission dynamics of novel influenza A/H1N1 2009 outbreak in a residential school in India[J]. Curr Sci, 2011,100(8):1177–1183.

    44. [44]

      Méndez LS, De Mateo Ontañón S, Cámara AL, et al. Transmissibility and severity of the pandemic influenza A (H1N1) 2009 virus in Spain[J]. Gac Sanit, 2011,25(4):296–302. DOI:10.1016/j.gaceta.2011.02.008.

    45. [45]

      Song PF, Xiao NY. Global hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease[J]. J Math Biol, 2018,76(5):1249–1267. DOI:10.1007/s00285−017−1173−y.

    46. [46]

      Tan XH, Yuan LL, Zhou JJ, et al. Modeling the initial transmission dynamics of influenza A H1N1 in Guangdong province, China[J]. Int J Infect Dis, 2013,17(7):e479–e484. DOI:10.1016/j.ijid.2012.11.018.

    47. [47]

      Tang SY, Xiao YN, Yuan L, et al. Campus quarantine (Fengxiao) for curbing emergent infectious diseases: lessons from mitigating A/H1N1 in Xi'an, China[J]. J Theor Biol, 2012,295:47–58. DOI:10.1016/j.jtbi.2011.10.035.

    48. [48]

      Tuite AR, Greer AL, Whelan M, et al. Estimated epidemiologic parameters and morbidity associated with pandemic H1N1 influenza[J]. Can Med Assoc J, 2010,182(2):131–136. DOI:10.1503/cmaj.091807.

    49. [49]

      Vaidya NK, Morgan M, Jones T, et al. Modelling the epidemic spread of an H1N1 influenza outbreak in a rural university town[J]. Epidemiol Infect, 2015,143(8):1610–1620. DOI:10.1017/S0950268814002568.

    50. [50]

      Velasco-Hernández JX, Leite MCA. A model for the A(H1N1) epidemic in Mexico, including social isolation[J]. Salud Publica Mex, 2011,53(1):40–47. DOI:10.1590/S0036−36342011000100007.

    51. [51]

      Wang LG, Chu CY, Yang G, et al. Transmission characteristics of different students during a school outbreak of (H1N1) pdm09 influenza in China, 2009[J]. Sci Rep, 2014,4:5982. DOI:10.1038/srep05982.

    52. [52]

      White LF, Wallinga J, Finelli L, et al. Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA[J]. Influenza Other Respir Viruses, 2009,3(6):267–276. DOI:10.1111/j.1750−2659.2009.00106.x.

    53. [53]

      Yang F, Yuan LL, Tan XH, et al. Bayesian estimation of the effective reproduction number for pandemic influenza A H1N1 in Guangdong province, China[J]. Ann Epidemiol, 2013,23(6):301–306. DOI:10.1016/j.annepidem.2013.04.005.

    54. [54]

      Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza transmission dynamics[J]. Proc Natl Acad Sci USA, 2015,112(9):2723–2728. DOI:10.1073/pnas.1415012112.

    55. [55]

      Yang Y, Sugimoto JD, Halloran ME, et al. The transmissibility and control of pandemic influenza A (H1N1) virus[J]. Science, 2009,326(5953):729–733. DOI:10.1126/science.1177373.

    56. [56]

      陈慧林, 董慧茹, 郑一男, 等. 考虑到隐性感染人群的潜伏期和发病期均传染的SLICAR模型[J]. 中国卫生统计,2015,32(2):264–266.
      Chen HL, Dong HR, Zheng YN, et al. An epidemic model named SLICAR for transmission of disease with asymptomatic infection and infective latent period[J]. Chin J Health Stat, 2015,32(2):264–266.

    57. [57]

      关鹏, 毕雪, 费良儒, 等. 某高校甲型H1N1流感传播元胞自动机模拟研究[J]. 中国感染控制杂志,2016,15(2):79–82. DOI:10.3969/j.issn.1671−9638.2016.02.002.
      Guan P, Bi X, Fei LR, et al. Simulation of the epidemic of influenza A (H1N1) in a university using cel-lular automata model[J]. Chin J Infect Control, 2016,15(2):79–82. DOI:10.3969/j.issn.1671−9638.2016.02.002.

    58. [58]

      何凡, 徐旭卿, 陈小娇. Richards模型在甲型H1N1流感大流行实时预测研究中的应用[J]. 疾病监测,2011,26(8):643–646. DOI:10.3784/j.issn.1003−9961.2011.08.018.
      He F, Xu XQ, Chen XJ. Application of Richards model in real-time incidence prediction of pandemic influenza A (H1N1)[J]. Dis Surveill, 2011,26(8):643–646. DOI:10.3784/j.issn.1003−9961.2011.08.018.

    59. [59]

      李晓松. 卫生统计学[M]. 8版. 北京: 人民卫生出版社, 2017: 26.
      Li XS. Health statistics[M]. 8th ed. Beijing: People's Medical Publishing House, 2017: 26.

    60. [60]

      Abdeljaoued-Tej I. COVID-19 data analysis and modeling in Palestine[J]. medRxiv, 2020. DOI:10.1101/2020.04.24.20078279.

    61. [61]

      Abdeljaoued-Tej I. A pandemic at the Tunisian scale. Mathematical modelling of reported and unreported COVID-19 infected cases[J]. medRxiv, 2000. DOI:10.1101/2020.05.21.20108621.

    62. [62]

      Aghaali M, Kolifarhood G, Nikbakht R, et al. Estimation of the serial interval and basic reproduction number of COVID-19 in Qom, Iran, and three other countries: a data-driven analysis in the early phase of the outbreak[J]. Transbound Emerg Dis, 2020. DOI:10.1111/tbed.13656.

    63. [63]

      Ahmadi A, Fadaei Y, Shirani M, et al. Modeling and forecasting trend of COVID-19 epidemic in Iran[J]. medRxiv, 2020. DOI:10.1101/2020.03.17.20037671.

    64. [64]

      Allieta M, Allieta A, Sebastiano DR. COVID-19 outbreak in Italy: estimation of reproduction numbers over two months toward the phase 2[J]. medRxiv, 2020. DOI:10.1101/2020.05.12.20076794v.

    65. [65]

      Anastassopoulou C, Russo L, Tsakris A, et al. Data-based analysis, modelling and forecasting of the COVID-19 outbreak[J]. PLoS One, 2020,15(3):e0230405. DOI:10.1371/journal.pone.0230405.

    66. [66]

      Aslan IH, Demir M, Wise MM, et al. Modeling COVID-19: Forecasting and analyzing the dynamics of the outbreak in Hubei and Turkey[J]. medRxiv, 2020. DOI:10.1101/2020.04.11.20061952.

    67. [67]

      Cao ZD, Zhang QP, Lu X, et al. Incorporating human movement data to improve epidemiological estimates for 2019-nCoV[J]. medRxiv, 2020. DOI:10.1101/2020.02.07.20021071.

    68. [68]

      Chen TM, Rui J, Wang QP, et al. A mathematical model for simulating the phase-based transmissibility of a novel coronavirus[J]. Infect Dis Poverty, 2020,9:24. DOI:10.1186/s40249−020−00640−3.

    69. [69]

      Di Domenico L, Pullano G, Sabbatini CE, et al. Expected impact of lockdown in Île-de-France and possible exit strategies[J]. medRxiv, 2020. DOI:10.1101/2020.04.13.20063933.

    70. [70]

      Distante C, Piscitelli P, Miani A. COVID-19 outbreak progression in italian regions: approaching the peak by the end of march in northern Italy and first week of April in Southern Italy[J]. Int J Environ Res Public Health, 2020,17(9):3025. DOI:10.3390/ijerph17093025.

    71. [71]

      Ediriweera DS, De Silva NR, Malavige NG, et al. An epidemiological model to aid decision-making for COVID-19 control in Sri Lanka[J]. medRxiv, 2020. DOI:10.1101/2020.04.11.20061481.

    72. [72]

      Gatto M, Bertuzzo E, Mari L, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures[J]. Proc Natl Acad Sci USA, 2020,117(19):10484–10491. DOI:10.1073/pnas.2004978117.

    73. [73]

      Gjini E. Modeling COVID-19 dynamics for real-time estimates and projections: an application to Albanian data[J]. medRxiv, 2020. DOI:10.1101/2020.03.20.20038141.

    74. [74]

      Glass DH. European lockdowns and the consequences of relaxation during the COVID-19 pandemic[J]. medRxiv, 2020. DOI:10.1101/2020.05.19.20106542.

    75. [75]

      苟发香, 张晓曙, 姚进喜, 等. 甘肃省新型冠状病毒肺炎流行病学特征分析[J]. 中华流行病学杂志,2020,41(09):1415–1419. DOI:10.3760/cma.j.cn112338−20200229−00216.
      Gou FX, Zhang XS, Yao JX, et al. Epidemiological characteristics of COVID-19 in Gansu province[J]. Chin Epidemiol, 2020,41(09):1415–1419. DOI:10.3760/cma.j.cn112338−20200229−00216.

    76. [76]

      Hamidouche M. COVID-19 outbreak in Algeria: a mathematical model to predict cumulative cases[J]. medRxiv, 2020. DOI:10.1101/2020.03.20.20039891.

    77. [77]

      Hao XJ, Cheng SS, Wu DG, et al. Full-spectrum dynamics of the coronavirus disease outbreak in Wuhan, China: a modeling study of 32, 583 laboratory-confirmed cases[J]. medRxiv, 2020. DOI:10.1101/2020.04.27.20078436.

    78. [78]

      Hao T. Infection dynamics of coronavirus disease 2019 (COVID-19) modeled with the integration of the Eyring rate process theory and free volume concept[J]. medRxiv, 2020. DOI:10.1101/2020.02.26.20028571.

    79. [79]

      Huang R, Liu M, Ding YM. Spatial-temporal distribution of COVID-19 in China and its prediction: A data-driven modeling analysis[J]. J Infect Dev Ctries, 2020,14(3):246–253. DOI:10.3855/jidc.12585.

    80. [80]

      Hyafil A, Moriña D. Analysis of the impact of lockdown on the reproduction number of the SARS-CoV-2 in Spain[J]. medRxiv, 2020. DOI:10.1101/2020.04.18.20070862.

    81. [81]

      Jia WP, Han K, Song Y, et al. Extended SIR prediction of the epidemics trend of COVID-19 in Italy and compared with Hunan, China[J]. medRxiv, 2020. DOI:10.1101/2020.03.18.20038570.

    82. [82]

      Jung SM, Akhmetzhanov AR, Hayashi K, et al. Real-time estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases[J]. J Clin Med, 2020,9(2):523. DOI:10.3390/jcm9020523.

    83. [83]

      Kuniya T. Prediction of the epidemic peak of coronavirus disease in Japan, 2020[J]. J Clin Med, 2020,9(3):789. DOI:10.3390/jcm9030789.

    84. [84]

      Kurita J, Sugishita Y, Sugawara T, et al. Estimation of protection for COVID-19 in children from epidemiological information and estimate effect of policy in Japan[J]. medRxiv, 2020. DOI:10.1101/2020.03.27.20045252.

    85. [85]

      Kurita J, Sugawara T, Ohkusa Y. Mobility data can explain the entire COVID-19 outbreak course in Japan[J]. medRxiv, 2020. DOI:10.1101/2020.04.26.20081315.

    86. [86]

      Kurita J, Sugawara T, Ohkusa Y. Effect of emergency declaration for the COVID-19 outbreak in Tokyo, Japan in the first two weeks[J]. medRxiv, 2020. DOI:10.1101/2020.04.16.20067447.

    87. [87]

      Kurita J, Sugawara T, Ohkusa Y. Forecast of the COVID-19 outbreak and effects of self-restraint in going out in Tokyo, Japan[J]. medRxiv, 2020. DOI:10.1101/2020.04.02.20051490.

    88. [88]

      Lai A, Bergna A, Acciarri C, et al. Early phylogenetic estimate of the effective reproduction number of SARS-CoV-2[J]. J Med Virol, 2020,92(6):675–679. DOI:10.1002/jmv.25723.

    89. [89]

      Last M. The first wave of COVID-19 in Israel - initial analysis of publicly available data[J]. medRxiv, 2020. DOI:10.1101/2020.05.05.20091645.

    90. [90]

      Rajendrakumar AL, Nair ATN, Nangia C, et al. Epidemic landscape and forecasting of SARS-CoV-2 in India[J]. medRxiv, 2020. DOI:10.1101/2020.04.14.20065151.

    91. [91]

      Lemaitre JC, Perez-Saez J, Azman AS, et al. Assessing the impact of non-pharmaceutical interventions on SARS-CoV-2 transmission in Switzerland[J]. medRxiv, 2020. DOI:10.1101/2020.05.04.20090639.

    92. [92]

      Li JH, Wang YJ, Gilmour S, et al. Estimation of the epidemic properties of the 2019 novel coronavirus: A mathematical modeling study[J]. medRxiv, 2020. DOI:10.1101/2020.02.18.20024315.

    93. [93]

      Li Q, Guan XH, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia[J]. N Engl J Med, 2020,382(13):1199–1207. DOI:10.1056/NEJMoa2001316.

    94. [94]

      Lin G, Strauss AT, Pinz M, et al. Explaining the bomb-like dynamics of COVID-19 with modeling and the implications for policy[J]. medRxiv, 2020. DOI:10.1101/2020.04.05.20054338.

    95. [95]

      Liu F, Li X, Zhu GF. Using the contact network model and Metropolis-Hastings sampling to reconstruct the COVID-19 spread on the “Diamond Princess”[J]. Sci Bull, 2020,65(15):1297–1305. DOI:10.1016/j.scib.2020.04.043.

    96. [96]

      Liu QH, Zhu JK, Liu ZC, et al. Transmission in latent period causes a large number of infected people in the United States[J]. medRxiv, 2020. DOI:10.1101/2020.05.07.20094086.

    97. [97]

      Liu QH, Liu ZC, Zhu JK, et al. Assessing the global tendency of COVID-19 outbreak[J]. medRxiv, 2020. DOI:10.1101/2020.03.18.20038224.

    98. [98]

      Liu ZH, Magal P, Seydi O, et al. Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data[J]. arXiv: 2002.12298, 2020.

    99. [99]

      Liu T, Hu JX, Xiao JP, et al. Time-varying transmission dynamics of novel coronavirus pneumonia in China[J]. bioRxiv, 2020. DOI:10.1101/2020.01.25.919787.

    100. [100]

      Lytras T, Panagiotakopoulos G, Tsiodras S. Estimating the ascertainment rate of SARS-CoV-2 infection in Wuhan, China: implications for management of the global outbreak[J]. medRxiv, 2020. DOI:10.1101/2020.03.24.20042218.

    101. [101]

      Mahsin M, Lee S, Vickers D, et al. The Coronavirus 2019 pandemic in Canada: the impact of public health interventions on the course of the outbreak in Alberta and other provinces[J]. medRxiv, 2020. DOI:10.1101/2020.05.09.20096636.

    102. [102]

      Majumder MS, Mandl KD. Early in the epidemic: impact of preprints on global discourse about COVID-19 transmissibility[J]. Lancet Glob Health, 2020,8(5):e627–630. DOI:10.1016/S2214−109X(20)30113−3.

    103. [103]

      Masjedi H, Rabajante JF, Bahranizadd F, et al. Nowcasting and forecasting the spread of COVID-19 in Iran[J]. medRxiv, 2020. DOI:10.1101/2020.04.22.20076281.

    104. [104]

      Maugeri A, Barchitta M, Battiato S, et al. Estimation of unreported novel coronavirus (SARS-CoV-2) infections from reported deaths: a susceptible-exposed-infectious-recovered-dead model[J]. J Clin Med, 2020,9(5):1350. DOI:10.3390/jcm9051350.

    105. [105]

      Muniz-Rodriguez K, Fung ICH, Ferdosi SR, et al. Transmission potential of COVID-19 in Iran[J]. medRxiv, 2020. DOI:10.1101/2020.03.08.20030643.

    106. [106]

      Musa Salihu S, 高道舟, 赵时, 等. 不同隔离措施对中国武汉市早期阶段的新型冠状病毒传播影响的机理建模研究[J]. 应用数学学报,2020,43(02):350–364.
      Musa Salihu S, Gao DZ, Zhao S, et al. Mechanistic modeling of the coronavirus disease 2019 outbreak in the early phase in Wuhan[J]. Acta Mathem Appl Sin, 2020,43(02):350–364.

    107. [107]

      Nabi KN. Forecasting COVID-19 pandemic: a data-driven analysis[J]. medRxiv, 2020. DOI:10.1101/2020.05.12.20099192.

    108. [108]

      De Oliveira ACS, Morita LHM, Da Silva EB, et al. Bayesian modeling of COVID-19 cases with a correction to account for under-reported cases[J]. medRxiv, 2020. DOI:10.1101/2020.05.24.20112029.

    109. [109]

      Kwok KO, Chan HHH, Huang Y, et al. Inferring super-spreading from transmission clusters of COVID-19 in Hong Kong, Japan, and Singapore[J]. J Hosp Infect, 2020,105(4):682–685. DOI:10.1016/j.jhin.2020.05.027.

    110. [110]

      Orzechowska M, Bednarek AK. Forecasting COVID-19 pandemic in Poland according to government regulations and people behavior[J]. medRxiv, 2020. DOI:10.1101/2020.05.26.20112458.

    111. [111]

      潘兴强, 陈奕, 王爱红, 等. 宁波市15起新型冠状病毒肺炎聚集性疫情的传播力研究[J]. 中华流行病学杂志,2020,41:E066. DOI:10.3760/cma.j.cn112338−20200330−00466.
      Pan XQ, Chen Y, Wang AH, et al. Study on transmission dynamic of 15 clusters of coronavirus disease 2019 cases in Ningbo[J]. Chin J Epidemiol, 2020,41:E066. DOI:10.3760/cma.j.cn112338−20200330−00466.

    112. [112]

      Ping KK. Epidemiologic Characteristics of COVID-19 in Guizhou, China[J]. medRxiv, 2020. DOI:10.1101/2020.03.01.20028944.

    113. [113]

      Ranjan R. Predictions for COVID-19 outbreak in India using epidemiological models[J]. medRxiv, 2020. DOI:10.1101/2020.04.02.20051466.

    114. [114]

      Read JM, Bridgen JRE, Cummings DAT, et al. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions[J]. medRxiv, 2020. DOI:10.1101/2020.01.23.20018549.

    115. [115]

      Riou J, Althaus CL. Pattern of early human-to-human transmission of Wuhan 2019-nCoV[J]. bioRxiv, 2020. DOI:10.1101/2020.01.23.917351.

    116. [116]

      Rocklöv J, Sjödin H, Wilder-Smith A. COVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures[J]. J Travel Med, 2020,27(3):taaa030. DOI:10.1093/jtm/taaa030.

    117. [117]

      Rovetta A, Bhagavathula AS, Castaldo L. Modelling the epidemiological trend and behavior of COVID-19 in Italy[J]. medRxiv, 2020. DOI:10.1101/2020.03.19.20038968.

    118. [118]

      Russo L, Anastassopoulou C, Tsakris A, et al. Tracing DAY-ZERO and forecasting the COVID-19 outbreak in Lombardy, Italy: a compartmental modelling and numerical optimization approach[J]. medRxiv, 2020. DOI:10.1101/2020.03.17.20037689.

    119. [119]

      Russo L, Anastassopoulou C, Tsakris A, et al. Tracing DAY-ZERO and forecasting the fade out of the COVID-19 outbreak in Lombardy, Italy: a compartmental modelling and numerical optimization approach[J]. medRxiv, 2020. DOI:10.1101/2020.03.17.20037689.

    120. [120]

      Sanche S, Lin YT, Xu CG, et al. High contagiousness and rapid spread of severe acute respiratory syndrome coronavirus 2[J]. Emerg Infect Dis, 2020,26(7):1470–1477. DOI:10.3201/eid2607.200282.

    121. [121]

      Shao N, Cheng J, Chen WB. The reproductive number R0 of COVID-19 based on estimate of a statistical time delay dynamical system[J]. medRxiv, 2020. DOI:10.1101/2020.02.17.20023747.

    122. [122]

      Shen MW, Peng ZH, Xiao YN, et al. Modelling the epidemic trend of the 2019 novel coronavirus outbreak in China[J]. bioRxiv, 2020. DOI:10.1101/2020.01.23.916726.

    123. [123]

      Siwiak MM, Szczesny P, Siwiak MP. From a single host to global spread. The global mobility based modelling of the COVID-19 pandemic implies higher infection and lower detection rates than current estimates[J]. medRxiv, 2020. DOI:10.1101/2020.03.21.20040444.

    124. [124]

      Sofonea MT, Reyné B, Elie B, et al. Epidemiological monitoring and control perspectives: application of a parsimonious modelling framework to the COVID-19 dynamics in France[J]. medRxiv, 2020. DOI:10.1101/2020.05.22.20110593.

    125. [125]

      Souza WMD, Buss LF, Da Silva Candido D, et al. Epidemiological and clinical characteristics of the early phase of the COVID-19 epidemic in Brazil[J]. medRxiv, 2020. DOI:10.1101/2020.04.25.20077396.

    126. [126]

      Su LX, Hong N, Zhou X, et al. Evaluation of the secondary transmission pattern and epidemic prediction of COVID-19 in the four metropolitan areas of China[J]. medRxiv, 2020. DOI:10.1101/2020.03.06.20032177.

    127. [127]

      Sugishita Y, Kurita J, Sugawara T, et al. Preliminary evaluation of voluntary event cancellation as a countermeasure against the COVID-19 outbreak in Japan as of 11 March, 2020[J]. medRxiv, 2020. DOI:10.1101/2020.03.12.20035220.

    128. [128]

      Sugishita Y, Kurita J, Sugawara T, et al. Insignificant effect of counter measure for coronavirus infectious disease-19 in Japan[J]. medRxiv, 2020. DOI:10.1101/2020.03.19.20037945.

    129. [129]

      Sypsa V, Roussos S, Paraskevis D, et al. Modelling the SARS-CoV-2 first epidemic wave in Greece: social contact patterns for impact assessment and an exit strategy from social distancing measures[J]. medRxiv, 2020. DOI:10.1101/2020.05.27.20114017.

    130. [130]

      Tang B, Wang X, Li Q, et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med, 2020,9(2):462. DOI:10.3390/jcm9020462.

    131. [131]

      Tang B, Xia F, Bragazzi NL, et al. Lessons drawn from China and South Korea for managing COVID-19 epidemic: insights from a comparative modeling study[J]. medRxiv, 2020. DOI:10.1101/2020.03.09.20033464.

    132. [132]

      Torres-Roman JS, Kobiak IC, Valcarcel B, et al. The reproductive number R0 of COVID-19 in Peru: An opportunity for effective changes[J]. Travel Med Infect Dis, 2020:101689. DOI:10.1016/J.TMAID.2020.101689.

    133. [133]

      Wan KK, Chen J, Lu CM, et al. When will the battle against novel coronavirus end in Wuhan: A SEIR modeling analysis[J]. J Glob Health, 2020,10(1):011002. DOI:10.7189/jogh.10.011002.

    134. [134]

      Wang M, Qi JT. A deterministic epidemic model for the emergence of COVID-19 in China[J]. medRxiv, 2020. DOI:10.1101/2020.03.08.20032854.

    135. [135]

      Wang WB, Chen YQ, Wang Q, et al. Transmission dynamics of SARS-CoV-2 in China: impact of public health interventions[J]. medRxiv, 2020. DOI:10.1101/2020.03.24.20036285.

    136. [136]

      Xiong H, Yan HL. Simulating the infected population and spread trend of 2019-nCoV under different policy by EIR model[J]. medRxiv, 2020. DOI:10.1101/2020.02.10.20021519.

    137. [137]

      Xu C, Dong YQ, Yu XY, et al. Estimation of reproduction numbers of COVID-19 in typical countries and epidemic trends under different prevention and control scenarios[J]. Front Med, 2020,14(5):613–622. DOI:10.1007/s11684−020−0787−4.

    138. [138]

      Yuan HY, Han GY, Yuan H, et al. The importance of the timing of quarantine measures before symptom onset to prevent COVID-19 outbreaks - illustrated by Hong Kong's intervention model[J]. medRxiv, 2020. DOI:10.1101/2020.05.03.20089482.

    139. [139]

      Zhang B, Zhou HW, Zhou F. Study on SARS-COV-2 transmission and the effects of control measures in China[J]. medRxiv, 2020. DOI:10.1101/2020.02.16.20023770.

    140. [140]

      Zhang KK, Xie LL, Lawless L, et al. Characterizing the transmission and identifying the control strategy for COVID-19 through epidemiological modeling[J]. medRxiv, 2020. DOI:10.1101/2020.02.24.20026773.

    141. [141]

      Zhang S, Diao MY, Yu WB, et al. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis[J]. Int J Infect Dise, 2020,93:201–204. DOI:10.1016/j.ijid.2020.02.033.

    142. [142]

      Zhao Y, Wang RN, Li JP, et al. Analysis of the transmissibility Change of 2019-novel coronavirus pneumonia and its potential factors in China from 2019 to 2020[J]. Biomed Res Int, 2020,2020:3842470. DOI:10.1155/2020/3842470.

    143. [143]

      Zhao S, Musa SS, Lin QY, et al. Estimating the unreported number of novel coronavirus (2019-nCoV) cases in china in the first half of January 2020: a data-driven modelling analysis of the early outbreak[J]. J Clin Med, 2020,9(2):388. DOI:10.3390/jcm9020388.

    144. [144]

      Zhao S, Lin QY, Ran JJ, et al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak[J]. Int J Infect Dis, 2020,92:214–217. DOI:10.1016/j.ijid.2020.01.050.

    145. [145]

      Zhao S, Cao PH, Gao DZ, et al. Modelling the coronavirus disease (COVID-19) outbreak on the Diamond Princess ship using the public surveillance data from January 20 to February 20, 2020[J]. medRxiv, 2020. DOI:10.1101/2020.02.26.20028449.

    146. [146]

      Zhou X, Ma XD, Hong N, et al. Forecasting the worldwide spread of COVID-19 based on logistic model and SEIR model[J]. medRxiv, 2020.

    147. [147]

      Zhou C. Evaluating new evidence in the early dynamics of the novel coronavirus COVID-19 outbreak in Wuhan, China with real time domestic traffic and potential asymptomatic transmissions[J]. medRxiv, 2020. DOI:10.1101/2020.02.15.20023440.

    148. [148]

      Zhou T, Liu QH, Yang ZM, et al. Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV[J]. J Evid Based Med, 2020,13(1):3–7. DOI:10.1111/jebm.12376.

    149. [149]

      Zhuang Z, Zhao S, Lin QY, et al. Preliminary estimating the reproduction number of the coronavirus disease (COVID-19) outbreak in Republic of Korea and Italy by 5 March 2020[J]. medRxiv, 2020. DOI:10.1101/2020.03.02.20030312.

    150. [150]

      Zou DF, Wang LX, Xu P, et al. Epidemic model guided machine learning for COVID-19 forecasts in the United States[J]. medRxiv, 2020. DOI:10.1101/2020.05.24.20111989.

    151. [151]

      白尧, 刘昆, 陈志军, 等. 陕西省新型冠状病毒肺炎疫情的早期传播动力学研究[J]. 中华医院感染学杂志,2020,30(6):834–838. DOI:10.11816/cn.ni.2020−200218.
      Bai Y, Liu K, Chen ZJ, et al. Early transmission dynamics of COVID-19 epidemic in shaanxi province[J]. Chin J Nosocomiol, 2020,30(6):834–838. DOI:10.11816/cn.ni.2020−200218.

    152. [152]

      胡義, 王开发, 王稳地. 2019新型冠状病毒肺炎疫情传播能力及疫情控制效能的地域差异分析[J]. 应用数学学报,2020,43(2):227–237.
      Hu X, Wang KF, Wang WD. Analysis of transmissibility of COVID-19 and regional differences in disease control[J]. Acta Mathem Appl Sin, 2020,43(2):227–237.

    153. [153]

      李承倬, 冯敖梓, 武文韬, 等. 河南省新型冠状病毒肺炎疫情防控效果分析[J]. 中医学报,2020,35(3):497–500. DOI:10.16368/j.issn.1674−8999.2020.03.111.
      Li CZ, Feng AZ, Wu WT, et al. Analysis epidemic prevention and control effect of COVID-19 in Henan[J]. JActa Chin Med, 2020,35(3):497–500. DOI:10.16368/j.issn.1674−8999.2020.03.111.

    154. [154]

      李承倬, 武文韬, 潘振宇, 等. 基于SIR模型和基本再生数的浙江省新型冠状病毒肺炎防控效果分析[J]. 浙江医学,2020,42(4):311–314. DOI:10.12056/j.issn.1006−2785.2020.42.4.2019−388.
      Li CZ, Wu WT, Pan ZY, et al. Prevention and control of coronavirus disease 2019 in Zhejiang province based on SIR model and R0[J]. Zhejiang Med J, 2020,42(4):311–314. DOI:10.12056/j.issn.1006−2785.2020.42.4.2019−388.

    155. [155]

      李盈科, 赵时, 楼一均, 等. 新型冠状病毒肺炎的流行病学参数与模型[J]. 物理学报,2020,69(9):21–30. DOI:10.7498/aps.69.20200389.
      Li YK, Zhao S, Lou YJ, et al. Epidemiological parameters and models of coronavirus disease 2019[J]. Acta Phys Sin, 2020,69(9):21–30. DOI:10.7498/aps.69.20200389.

    156. [156]

      林挺葵, 吴家园, 刘华锋, 等. 粤西地区及各地级市新型冠状病毒肺炎疫情发展趋势预测分析—基于Holt双参数指数平滑模型的研究[J]. 实用心脑肺血管病杂志,2020,28(2):13–17. DOI:10.3969/j.issn.1008−5971.2020.02.004.
      Lin TK, Wu JY, Liu HF, et al. Prediction of epidemic tread of COVID-19 in western Guangdong and other prefecture-level cities: A study based on holt two-parameter exponential smoothing model[J]. Prac J Card Cereb Pneum Vasc Dis, 2020,28(2):13–17. DOI:10.3969/j.issn.1008−5971.2020.02.004.

    157. [157]

      石耀霖, 程惠红, 黄禄渊, 等. 用离散随机模型研究湖北新冠肺炎COVID-19流行病动力学特征[J]. 中国科学院大学学报,2020,37(2):145–154. DOI:10.7523/j.issn.2095−6134.2020.02.001.
      Shi YL, Cheng HH, Huang LY, et al. Using a discrete stochastic model to study the epidemic dynamics of COVID-19 in Hubei, China[J]. J Univ Chin Acad Sci, 2020,37(2):145–154. DOI:10.7523/j.issn.2095−6134.2020.02.001.

    158. [158]

      宋鹏飞, 楼元, 朱利平, 等. 多阶段多尺度斑块模型以及在新型冠状病毒肺炎疫情中的应用[J]. 应用数学学报,2020,43(2):174–199.
      Song PF, Lou Y, Zhu LP, et al. Multi-stage and multi-scale patch model and the case study of novel coronavirus[J]. Acta Mathem Appl Sin, 2020,43(2):174–199.

    159. [159]

      宋倩倩, 赵涵, 方立群, 等. 新型冠状病毒肺炎的早期传染病流行病学参数估计研究[J]. 中华流行病学杂志,2020,41(4):461–465. DOI:10.3760/cma.j.cn112338−20200205−00069.
      Song QQ, Zhao H, Fang LQ, et al. Study on assessing early epidemiological parameters of coronavirus disease epidemic in China[J]. Chin J Epidemiol, 2020,41(4):461–465. DOI:10.3760/cma.j.cn112338−20200205−00069.

    160. [160]

      王莹, 尤心怡, 王奕婧, 等. 中国新型冠状病毒肺炎疫情再生系数评估[J]. 中华流行病学杂志,2020,41(4):476–479. DOI:10.3760/cma.j.cn112338−20200210−00086.
      Wang Y, You XY, Wang YJ, et al. Estimating the basic reproduction number of COVID-19 in Wuhan, China[J]. Chin J Epidemiol, 2020,41(4):476–479. DOI:10.3760/cma.j.cn112338−20200210−00086.

    161. [161]

      吴家园, 赖天文, 刘华锋, 等. 广东省湛江市新型冠状病毒肺炎流行趋势的初步预测[J]. 广东医科大学学报,2020,38(2):148–152. DOI:10.3969/j.issn.1005−4057.2020.02.005.
      Wu JY, Lai TW, Liu HF, et al. Preliminary prediction of the trend of novel coronavirus pneumonia in Zhanjiang, Guangdong[J]. J Guangdong Med Univ, 2020,38(2):148–152. DOI:10.3969/j.issn.1005−4057.2020.02.005.

    162. [162]

      武文韬, 柏如海, 李达宁, 等. 广东省新型冠状病毒肺炎疫情流行趋势的初步预测[J]. 暨南大学学报(自然科学与医学版),2020,41(2):181–185. DOI:10.11778/j.jdxb.2020.02.013.
      Wu WT, Bai RH, Li DN, et al. Preliminary prediction of the epidemic trend of corona virus disease 2019 in Guangdong province[J]. J Jinan Univ (Nat Sci Med Ed), 2020,41(2):181–185. DOI:10.11778/j.jdxb.2020.02.013.

    163. [163]

      徐晓娜, 孙昕, 贾盛佼, 等. 青岛地区COVID-19流行病学特征分析[J]. 中国微生态学杂志,2020,32(5):586–590. DOI:10.13381/j.cnki.cjm.202005020.
      Xu XN, Sun X, Jia SJ, et al. Epidemiological characteristics of COVID-19 in Qingdao[J]. J Microbiol, 2020,32(5):586–590. DOI:10.13381/j.cnki.cjm.202005020.

    164. [164]

      赵序茅, 李欣海, 聂常虹. 基于大数据回溯新冠肺炎的扩散趋势及中国对疫情的控制研究[J]. 中国科学院院刊,2020,35(3):248–255. DOI:10.16418/j.issn.1000−3045.20200210002.
      Zhao XM, Li XH, Nie CH. Backtracking transmission of COVID-19 in China based on big data source, and effect of strict pandemic control policy[J]. Bull Chin Acad Sci, 2020,35(3):248–255. DOI:10.16418/j.issn.1000−3045.20200210002.

    165. [165]

      周涛, 刘权辉, 杨紫陌, 等. 新型冠状病毒肺炎基本再生数的初步预测[J]. 中国循证医学杂志,2020,20(3):359–364. DOI:10.7507/1672−2531.202001118.
      Zhou T, Liu QH, Yang ZM, et al. Preliminary prediction of the basic reproduction number of the novel coronavirus 2019-nCoV[J]. Chin J Evid Based Med, 2020,20(3):359–364. DOI:10.7507/1672−2531.202001118.

    166. [166]

      Ali M, Shah STH, Imran M, et al. The role of asymptomatic class, quarantine and isolation in the transmission of COVID-19[J]. J Biol Dynam, 2020,14(1):389–408. DOI:10.1080/17513758.2020.1773000.

    167. [167]

      Bentout S, Chekroun A, Kuniya T. Parameter estimation and prediction for coronavirus disease outbreak 2019 (COVID-19) in Algeria[J]. AIMS Public Health, 2020,7(2):306–318. DOI:10.3934/publichealth.2020026.

    168. [168]

      Feng LX, Jing SL, Hu SK, et al. Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK[J]. Math Biosci Eng, 2020,17(4):3618–3636. DOI:10.3934/mbe.2020204.

    169. [169]

      Feng XM, Chen J, Wang K, et al. Phase-adjusted estimation of the COVID-19 outbreak in South Korea under multi-source data and adjustment measures: a modelling study[J]. Mathemat Biosci Eng, 2020,17(4):3637–3648. DOI:10.3934/mbe.2020205.

    170. [170]

      Guerra FM, Bolotin S, Lim G, et al. The basic reproduction number (R0) of measles: a systematic review[J]. Lancet Infect Dis, 2017,17(12):e420–428. DOI:10.1016/S1473−3099(17)30307−9.

    171. [171]

      Sy KTL, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties[J]. medRxiv, 2020. DOI:10.1101/2020.06.12.20130021.

    172. [172]

      Coburn BJ, Wagner BG, Blower S. Modeling influenza epidemics and pandemics: insights into the future of swine flu (H1N1)[J]. BMC Med, 2009,7:30. DOI:10.1186/1741−7015−7−30.

    173. [173]

      Lowen AC, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathog, 2007,3(10):1470–1476. DOI:10.1371/journal.ppat.0030151.

    174. [174]

      中华人民共和国国务院新闻办公室. 中国气象局2009年6月份新闻发布会[EB/OL]. (2009−06−01)[2020−07−31]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/fbh/Document/337567/337567.htm.
      The State Council Information Office of the People’s Republic of China. China Meteorological Administration June 2009 press conference[EB/OL]. (2009−06−01)[2020−07−31]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/fbh/Document/337567/337567.htm.

    175. [175]

      中华人民共和国国务院新闻办公室. 中国气象局2009年7月份新闻发布会[EB/OL]. (2009−06−30)[2020−07−31]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/qxj/document/355542/355542.htm.
      The State Council Information Office of the People’s Republic of China. China Meteorological Administration July 2009 press conference[EB/OL]. (2009−06−30)[2020−07−31]. http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/qxj/document/355542/355542.htm.

    176. [176]

      Shi P, Dong YQ, Yan HC, et al. The impact of temperature and absolute humidity on the coronavirus disease 2019 (COVID-19) outbreak - evidence from China[J]. medRxiv, 2020. DOI:10.1101/2020.03.22.20038919.

    1. [1]

      龚震宇(摘译)龚训良(审校) . 美国新型冠状病毒肺炎病例便利调查样本的临床症状概况(2020年1-4月). 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.08.022

    2. [2]

      丁哲渊吴昊澄吴晨鲁琴宝林君芬 . 浙江省新型冠状病毒肺炎疫情应急响应期间其他法定传染病监测分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.08.015

    3. [3]

      赵烨孙晋渊杨玲蔡雨阳 . 我国西北及东北边境地区新型冠状病毒肺炎疫情流行特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.007

    4. [4]

      高海军张颋许光荣叶萍秦忠雪段勇军 . 四川省甘孜藏族自治州新型冠状病毒肺炎病例流行病学特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.006

    5. [5]

      龚震宇(摘译)龚训良(审校) . 2020年2月12日至5月18日美国新型冠状病毒肺炎死亡病例的分布特征. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.022

    6. [6]

      江初王菊光蔡伟张绍波应华清邢彦李海生李玉莲富继业北京市海淀区疾病预防控制中心新型冠状病毒肺炎应急处理组 . 北京市海淀区新型冠状病毒肺炎确诊病例流行病学特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.07.011

    7. [7]

      韩辉伍波贾娇娇宋亚京 . 2020年1月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.02.003

    8. [8]

      韩辉伍波宋亚京贾娇娇 . 2020年5月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.06.003

    9. [9]

      韩辉伍波贾娇娇宋亚京 . 2020年2月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.03.003

    10. [10]

      韩辉伍波贾娇娇宋亚京 . 2020年3月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.04.003

    11. [11]

      韩辉伍波贾娇娇宋亚京 . 2020年4月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.05.003

    12. [12]

      韩辉伍波贾娇娇宋亚京 . 2020年6月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.07.003

    13. [13]

      韩辉伍波马爱敏贾娇娇宋亚京 . 2020年7月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.08.003

    14. [14]

      韩辉伍波李海山贾娇娇 . 2020年8月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.003

    15. [15]

      韩辉伍波李海山贾娇娇 . 2020年9月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.10.003

    16. [16]

      韩辉伍波李海山贾娇娇 . 2020年10月全球传染病疫情概要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.11.003

    17. [17]

      王雷彭欣曲亚斌孟瑞琳康敏陈旭光杨芬 . 广东省复工人员新型冠状病毒肺炎知信行调查. 疾病监测,

    18. [18]

      杨瑛莹詹思怡姜棋竞傅传喜 . 中国258个城市新型冠状病毒肺炎时空分布特征研究. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.11.005

    19. [19]

      郑芸鹤刘海霞苟发香张宏杨筱婷田彦军魏孔福成瑶蒋小娟刘新凤 . 甘肃省新型冠状病毒肺炎疫情时间风险的空间特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.11.006

    20. [20]

      姜海波史宏博冯宏伟顾晓敏李怀亮洪航 . 新型冠状病毒肺炎疫情对浙江省宁波市艾滋病防制工作的影响评估. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.008

  • 图 1  2009年H1N1流感大流行的R0相关文献筛选流程图

    Figure 1.  Flow chart of influenza A (H1N1) pdm09 R0 related literature screening

    图 2  2009年H1N1流感大流行相关文献的R0分布箱式图

    Figure 2.  Distribution of R0 of influenza A (H1N1) pdm09 in literatures

    图 3  COVID-19的R0相关文献筛选流程图

    Figure 3.  Flow chart of COVID-19 R0 related literature screening

    图 4  COVID-19相关文献的R0分布箱式图

    Figure 4.  Distribution of R0 of COVID-19 in literatures

    表 1  2009年部分国家H1N1流感大流行的R0中位数

    Table 1.  Medians of R0 of influenza A (H1N1) pdm09 in some countries

    影响因素分层水平国家R0中位数(IQR)文献数目(篇)文献a分层结果HP
    国家经济发展水平高收入
    国家
    美国2.042
    (1.553~3.178)
    637,45,48,50,51-521.350
    (1.295~1.803)
    0.229
    加拿大1.710
    (1.325~1.895)
    520,31-32,34,44
    英国1.4201222.945
    日本1.385216,33
    挪威1.35014
    新西兰1.340135
    意大利1.280113
    西班牙1.235227,40
    澳大利亚1.24225,35
    中高收入
    国家
    泰国3.580314,24,301.545
    (1.378~2.559)
    伊朗2.018218,36
    墨西哥1.580
    (1.420~1.690)
    56,11,15,21,46
    阿根廷1.545225,35
    智利1.313212,35
    南非1.370135
    巴西1.355135
    中低收入
    国家
    印度2.035217,391.527
    (1.440~1.820)
    中国1.529
    (1.350~1.820)
    157,8,9,23,26,
    28-29,38,41-43,47,
    49,53-54
    玻利维亚1.440135
    摩洛哥1.44012
    人口密度人口密
    集区
    日本,泰国,意大利,印度,英国,中国/247-9,13-14,16-17,22-24,26,28-30,33,38-39,41-43,47,49,53-541.527
    (1.368~1.897)
    3.5540.169
    人口中
    等区
    巴西,美国,摩洛哥,墨西哥,南非,西班牙,伊朗/172,6,11,15,18,21,27,35-37,40,45-46,48,50-521.535
    (1.374~2.193)
    人口稀
    少区
    阿根廷,澳大利亚,玻利维亚,加拿大,挪威,新西兰,智利/104-5,12,20,25,31-32,34-35,441.350
    (1.270~1.550)
      注:参考文献[1]和[10]中的病例为来自墨西哥的输入型病例,未说明所在国家;参考文献[3](欧洲国家)和[19](全球)未纳入分析;/. 单个国家的R0数据已在表1的国家经济发展水平中列出,因此在人口密度中不再重复描述
    下载: 导出CSV

    表 2  COVID-19相关文献的R0的中位数和变异程度(协变量)

    Table 2.  Median and variation (covariates) of R0 of COVID-19 in literatures

    影响因素分层水平国家文献数目(篇)文献aR0中位数(IQR)HP
    国家经济发展水平高收入国家 韩国,西班牙,阿根廷,阿联酋,爱尔兰,奥地利,澳大利亚,巴拿马,比利时,波兰,丹麦,德国,法国,芬兰,荷兰,加拿大,捷克,卡塔尔,意大利,美国,挪威,葡萄牙,日本,瑞典,瑞士,沙特阿拉伯,希腊,新加坡,以色列,英国,智利383,6,12-13,15-17,19-20,24-26,28-32,34,36,39,41-42,46,
    52,54-55,62-64,69,72-74,76,82,91,94-95
    2.595(2.343~3.578)1.2250.542
    中高收入国家阿尔巴尼亚,阿尔及利亚,巴西,白俄罗斯,多米尼加,俄罗斯联邦,厄瓜多尔,哥伦比亚,罗马尼亚,马来西亚,秘鲁,墨西哥,南非,塞尔维亚,斯里兰卡,土耳其,伊朗,中国733-5,7-11,14,18,20-24,26-27,33,37-38,42-45,47-54,56-57,59-60,65-67,70-71,75-85,87-89,91-93,96-1102.985(2.385~3.580)
    中低收入国家埃及,巴基斯坦,菲律宾,孟加拉国,突尼斯,乌克兰,印度,印度尼西亚 52,35,42,52,582.690(2.320~3.415)
    人口密度人口密集区 新加坡,孟加拉国,韩国,荷兰,印度,以色列,比利时,菲律宾,日本,斯里兰卡,巴基斯坦,英国,卡塔尔,德国,多米尼加,瑞士,意大利,中国,印度尼西亚,丹麦,捷克,阿联酋,波兰,法国,葡萄牙,奥地利,土耳其,阿尔巴尼亚913,5-8,10-20,22-24,26-39,41-45,47,49,51-52,54-60,62-67,69,71-73,75-85,87-89,91-94,96-1102.800(2.290~3.490)3.5860.166
    人口中等区 埃及、马来西亚、西班牙、罗马尼亚、希腊、塞尔维亚、乌克兰、突尼斯、爱尔兰、厄瓜多尔、墨西哥、巴拿马、伊朗、南非、白俄罗斯、哥伦比亚、美国、智利、巴西、瑞典162-4,19,25,39,42,48,50,52-53,70,74,82,91,952.860(2.415~3.633)
    人口稀少区 秘鲁、芬兰、阿尔及利亚、阿根廷、沙特阿拉伯、挪威、俄罗斯联邦、澳大利亚 79,21,42,46,52,77,823.200(2.540~4.060)
    预印本//611-2,4,6,8,10,12,14,18-19,21-23,25-26,34-35,37,39,41-42,44-46,48,50,52-53,55,62-64,76,79-81,83-85,90-92,94-952.860(2.353~3.472) −0.164b0.870
    非预印本//493,5,79,11,13,15-17,20,24,
    27-28,33,36,38,40,43,47,49,51,
    54,56,61,65,75,77-78,82,86-89,
    93,96,97-110
    2.910(2.150~4.061)
      注:b. Z统计量;/. 预印本和非预印本不涉及分层水平和国家
    下载: 导出CSV

    表 3  中国实施严格交通管制前后的COVID-19的R0分析

    Table 3.  R0 of COVID-19 before and after lockdown of Wuhan in China

     时间文献地点R0中位数(IQR)
    实施严格交通
    管制前
    3.430
    (2.500~4.710)
    71中国内地    6.470
    72中国内地    3.800
    80中国内地    3.600
    6中国湖北省   5.945
    33中国内地    4.380
    55中国湖北省武汉市3.110
    56中国内地    2.220
    81中国内地    5.500
    43中国湖北省武汉市2.550
    63中国      4.710
    34中国      2.200
    9中国湖北省武汉市3.580
    76中国湖北省武汉市3.380
    8中国湖北省武汉市3.240
    105中国湖北省武汉市5.750
    18中国湖北省武汉市3.430
    93中国大陆    2.420
    96中国湖北省武汉市2.500
    45中国      2.430
    实施严格交通
    管制后
    2.500
    (1.673~3.030)
    33中国内地    3.410
    67中国北京市   3.110
    67中国上海市   2.780
    67中国广东省广州市2.020
    67中国广东省深圳市1.750
    101中国湖北省   2.950
    97中国粤西地区  1.595
    105中国湖北省武汉市2.500
    74中国湖北省武汉市1.440
      注:R0. 基本传染数
    下载: 导出CSV

    表 4  2009年H1N1流感大流行与COVID-19的R0比较结果

    Table 4.  R0 comparison of influenza A(H1N1)pdm09 and COVID-19

    地区2009年H1N1流感大流行COVID-19
    R0中位数四分位数范围(IQR)R0中位数四分位数范围(IQR)ZP
    全球1.5081.336~1.8362.8602.350~3.560−8.437<0.001
    中国1.5291.350 ~ 1.8202.9302.215 ~ 3.453−4.158<0.001
      注:R0. 基本传染数
    下载: 导出CSV

    表 5  2009年H1N1流感大流行与COVID-19的R0的Meta分析结果

    Table 5.  Meta-analysis on R0 of influenza A(H1N1)pdm09 and COVID-19

      传染病地区文献数目(篇)R0数据个数R095%CIQPI2(%)
    2009 H1N1流感大流行全球      20261.5991.480~1.71911 256.636<0.00199.78
    COVID-19全球      45663.2603.022~3.49830 4811.735<0.00199.98
    国外      24443.4063.122~3.69022 2197.800<0.00199.98
    中国      22222.9082.601~3.2167 228.587<0.00199.71
    中国除湖北省外 
    其他省市    
    6 61.0360.313~1.7594.2420.5151 0.00
    中国湖北省武汉市 6 62.2090.492~3.9260.6720.9845 0.00
    预印本文献   28363.2512.853~3.65018 778.573<0.00199.81
    非预印本文献  17303.3352.949~3.720115 873.353<0.00199.97
      注:R0. 基本传染数
    下载: 导出CSV
  • 加载中
图(4)表(5)
计量
  • PDF下载量:  9
  • 文章访问数:  1462
  • HTML全文浏览量:  1050
  • 引证文献数: 0
文章相关
通信作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章

在线交流