季节性流感与气象因素相关性的系统评价

郭倩 陈涛 周罗晶

引用本文: 郭倩, 陈涛, 周罗晶. 季节性流感与气象因素相关性的系统评价[J]. 疾病监测. shu
Citation:  Qian Guo, Tao Chen and Luojing Zhou. Correlation between seasonal influenza and meteorological factors: a systematic review[J]. Disease Surveillance. shu

季节性流感与气象因素相关性的系统评价

    作者简介: 郭倩,女,江苏省泰州市人,医学硕士,主要从事流感病毒相关研究,Email:2411872586@qq.com;
    通信作者: 陈涛, chentao@cnic.org.cn 周罗晶, luojing76@163.com
摘要: 目的对季节性流感活动水平与气象因素之间的相关关系进行探讨。方法计算机检索PubMed、Cochrane图书馆、OVID、EBSCO、Web of Science等英文电子数据库中有关流感与气象因素相关性的文献,检索文献截至2019年5月,语种限定为英文。 共纳入45篇有效文献,包括实验室和流行病学研究,并将流行病学研究的研究地点按不同气候区进行分层,提取和整理分析纳入文献的基本信息、研究的气象因素、统计方法等。结果大多数流行病学研究使用了某种类型的回归分析,温带地区流感活动与低温低湿关系显著;亚热带和热带地区流感活动与气温和湿度之间的关联较为复杂且不一致,而降雨似乎会造成热带地区流感活动水平的升高。结论温带地区寒冷干燥和热带地区潮湿多雨的环境因素与流感流行关系密切,但关于太阳辐射、风速、大气压等气象因素对流感活动影响的信息仍然有限。

English

    1. [1]

      WHO. WHO global influenza surveillance network: manual for the laboratory diagnosis and virological surveillance of influenza[R]. Geneva: WHO, 2011.

    2. [2]

      Viboud C, Alonso WJ, Simonsen L. Influenza in tropical regions[J]. PLoS Med, 2006,3(4):e89. DOI:10.1371/journal.pmed.0030089.

    3. [3]

      Dapat C, Saito R, Kyaw Y, et al. Epidemiology of human influenza A and B viruses in Myanmar from 2005 to 2007[J]. Intervirology, 2009,52(6):310–320. DOI:10.1159/000237738.

    4. [4]

      Moura FEA, Perdigão AC, Siqueira MM. Seasonality of influenza in the tropics: a distinct pattern in northeastern Brazil[J]. Am J Trop Med Hyg, 2009,81(1):180–183. DOI:10.4269/ajtmh.2009.81.180.

    5. [5]

      Wong CM, Chan KP, Hedley AJ, et al. Influenza-associated mortality in Hong Kong[J]. Clin Infect Dis, 2004,39(11):1611–1617. DOI:10.1086/425315.

    6. [6]

      Yap FHY, Ho PL, Lam KF, et al. Excess hospital admissions for pneumonia, chronic obstructive pulmonary disease, and heart failure during influenza seasons in Hong Kong[J]. J Med Virol, 2004,73(4):617–623. DOI:10.1002/jmv.20135.

    7. [7]

      Van Noort SP, Águas R, Ballesteros S, et al. The role of weather on the relation between influenza and influenza-like illness[J]. J Theor Biol, 2012,298:131–137. DOI:10.1016/j.jtbi.2011.12.020.

    8. [8]

      Roussel M, Pontier D, Cohen JM, et al. Quantifying the role of weather on seasonal influenza[J]. BMC Public Health, 2016,16:441. DOI:10.1186/s12889−016−3114−x.

    9. [9]

      de Arróyabe Hernáez PF. Climate, weather and flu diagnoses incidence in the region of Santander (Northern Spain) during the 1999–2000 epidemic diffusion period[J]. Aerobiologia, 2004,20(4):223–228. DOI:10.1007/s10453−004−1186−z.

    10. [10]

      Du Prel JB, Puppe W, Gröndahl B, et al. Are meteorological parameters associated with acute respiratory tract infections?[J]. Clin Infect Dis, 2009,49(6):861–868. DOI:10.1086/605435.

    11. [11]

      Price RHM, Graham C, Ramalingam S. Association between viral seasonality and meteorological factors[J]. Sci Rep, 2019,9:929. DOI:10.1038/s41598−018−37481−y.

    12. [12]

      Davis RE, Rossier CE, Enfield KB. The impact of weather on influenza and pneumonia mortality in New York city, 1975–2002: a retrospective study[J]. PLoS One, 2012,7(3):e34091. DOI:10.1371/journal.pone.0034091.

    13. [13]

      Christophersen O. Mortality during the 1996/7 winter[J]. Popul Trends, 1997(90):11–17.

    14. [14]

      Shaman J, Pitzer V, Viboud C, et al. Absolute humidity and the seasonal onset of influenza in the continental US[J]. PLoS Curr, 2009,2:RRN1138. DOI:10.1371/currents.RRN1138.

    15. [15]

      Barreca AI, Shimshack JP. Absolute humidity, temperature, and influenza mortality: 30 years of county-level evidence from the United States[J]. Am J Epidemiol, 2012,176 Suppl 7:S114–122. DOI:10.1093/aje/kws259.

    16. [16]

      Shoji M, Katayama K, Sano K. Absolute humidity as a deterministic factor affecting seasonal influenza epidemics in Japan[J]. Tohoku J Exp Med, 2011,224(4):251–256. DOI:10.1620/tjem.224.251.

    17. [17]

      Te Beest DE, Van Boven M, Hooiveld M, et al. Driving factors of influenza transmission in the Netherlands[J]. Am J Epidemiol, 2013,178(9):1469–1477. DOI:10.1093/aje/kwt132.

    18. [18]

      Gomez-Barroso D, León-Gómez I, Delgado-Sanz C, et al. Climatic Factors and Influenza Transmission, Spain, 2010–2015[J]. Int J Environ Res Public Health, 2017,14(12):1469. DOI:10.3390/ijerph14121469.

    19. [19]

      Charland KML, Buckeridge DL, Sturtevant JL, et al. Effect of environmental factors on the spatio-temporal patterns of influenza spread[J]. Epidemiol Infect, 2009,137(10):1377–1387. DOI:10.1017/S0950268809002283.

    20. [20]

      Bai YL, Huang DS, Liu J, et al. Effect of meteorological factors on influenza-like illness from 2012 to 2015 in Huludao, a northeastern city in China[J]. PeerJ, 2019,7(26):e6919. DOI:10.7717/peerj.6919.

    21. [21]

      Soebiyanto RP, Gross D, Jorgensen P, et al. Associations between meteorological parameters and influenza activity in Berlin (Germany), Ljubljana (Slovenia), castile and León (Spain) and Israeli districts[J]. PLoS One, 2015,10(8):e0134701. DOI:10.1371/journal.pone.0134701.

    22. [22]

      Iha Y, Kinjo T, Parrott G, et al. Comparative epidemiology of influenza A and B viral infection in a subtropical region: a 7-year surveillance in Okinawa, Japan[J]. BMC Infect Dis, 2016,16:650. DOI:10.1186/s12879−016−1978−0.

    23. [23]

      Urashima M, Shindo N, Okabe N. A seasonal model to simulate influenza oscillation in Tokyo[J]. Jpn J Infect Dis, 2003,56(2):43–47.

    24. [24]

      Chen ZR, Zhu Y, Wang YQ, et al. Association of meteorological factors with childhood viral acute respiratory infections in subtropical China: an analysis over 11 years[J]. Arch Virol, 2014,159(4):631–639. DOI:10.1007/s00705−013−1863−8.

    25. [25]

      Dangi T, Jain B, Singh AK, et al. Influenza virus genotypes circulating in and around Lucknow, Uttar Pradesh, India, during post pandemic period, August 2010--September 2012[J]. Indian J Med Res, 2014,139(3):418–426.

    26. [26]

      Davis RE, Dougherty E, McArthur C, et al. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand[J]. Influenza Other Respir Viruses, 2016,10(4):310–313. DOI:10.1111/irv.12369.

    27. [27]

      Dai QG, Ma W, Huang HD, et al. The effect of ambient temperature on the activity of influenza and influenza like illness in Jiangsu province, China[J]. Sci Total Environ, 2018,645:684–691. DOI:10.1016/j.scitotenv.2018.07.065.

    28. [28]

      Liao CM, Chang SY, Chen SC, et al. Influenza-associated morbidity in subtropical Taiwan[J]. Int J Infect Dis, 2009,13(5):589–599. DOI:10.1016/j.ijid.2008.09.019.

    29. [29]

      Yang W, Cummings MJ, Bakamutumaho B, et al. Dynamics of influenza in tropical Africa: Temperature, humidity, and Co-circulating (sub) types[J]. Influenza Other Respir Viruses, 2018,12(4):446–456. DOI:10.1111/irv.12556.

    30. [30]

      Mahamat A, Dussart P, Bouix A, et al. Climatic drivers of seasonal influenza epidemics in French Guiana, 2006–2010[J]. J Infect, 2013,67(2):141–147. DOI:10.1016/j.jinf.2013.03.018.

    31. [31]

      Emukule GO, Mott JA, Spreeuwenberg P, et al. Influenza activity in Kenya, 2007–2013: timing, association with climatic factors, and implications for vaccination campaigns[J]. Influenza Other Respir Viruses, 2016,10(5):375–385. DOI:10.1111/irv.12393.

    32. [32]

      Monamele GC, Vernet MA, Nsaibirni RFJ, et al. Associations between meteorological parameters and influenza activity in a subtropical country: Case of five sentinel sites in Yaounde-Cameroon[J]. PLoS One, 2017,12(10):e0186914. DOI:10.1371/journal.pone.0186914.

    33. [33]

      Chan PK, Mok HY, Lee TC, et al. Seasonal influenza activity in Hong Kong and its association with meteorological variations[J]. J Med Virol, 2009,81(10):1797–1806. DOI:10.1002/jmv.21551.

    34. [34]

      Chong KC, Goggins W, Zee BCY, et al. Identifying meteorological drivers for the seasonal variations of influenza infections in a subtropical city - Hong Kong[J]. Int J Environ Res Public Health, 2015,12(2):1560–1576. DOI:10.3390/ijerph120201560.

    35. [35]

      Agrawal AS, Sarkar M, Chakrabarti S, et al. Comparative evaluation of real-time PCR and conventional RT-PCR during a 2 year surveillance for influenza and respiratory syncytial virus among children with acute respiratory infections in Kolkata, India, reveals a distinct seasonality of infection[J]. J Med Microbiol, 2009,58(12):1616–1622. DOI:10.1099/jmm.0.011304−0.

    36. [36]

      Alonso WJ, Guillebaud J, Viboud C, et al. Influenza seasonality in Madagascar: the mysterious African free-runner[J]. Influenza Other Respir Viruses, 2015,9(3):101–109. DOI:10.1111/irv.12308.

    37. [37]

      Soebiyanto RP, Clara W, Jara J, et al. The role of temperature and humidity on seasonal influenza in tropical areas: Guatemala, El Salvador and Panama, 2008–2013[J]. PLoS One, 2014,9(6):e100659. DOI:10.1371/journal.pone.0100659.

    38. [38]

      Soebiyanto RP, Clara WA, Jara J, et al. Associations between seasonal influenza and meteorological parameters in Costa Rica, Honduras and Nicaragua[J]. Geospat Health, 2015,10(2):372. DOI:10.4081/gh.2015.372.

    39. [39]

      Shek LPC, Lee BW. Epidemiology and seasonality of respiratory tract virus infections in the tropics[J]. Paediatr Respirat Rev, 2003,4(2):105–111. DOI:10.1016/s1526−0542(03)00024−1.

    40. [40]

      Thai PQ, Choisy M, Duong TN, et al. Seasonality of absolute humidity explains seasonality of influenza-like illness in Vietnam[J]. Epidemics, 2015,13:65–73. DOI:10.1016/j.epidem.2015.06.002.

    41. [41]

      Schulman JL, Kilbourne ED. Experimental transmission of influenza virus infection in mice: Ⅱ. some factors affecting the incidence of transmitted infection[J]. J Exp Med, 1963,118(2):267–275. DOI:10.1084/jem.118.2.267.

    42. [42]

      Lowen AC, Mubareka S, Steel J, et al. Influenza virus transmission is dependent on relative humidity and temperature[J]. PLoS Pathog, 2007,3(10):1470–1476. DOI:10.1371/journal.ppat.0030151.

    43. [43]

      Schaffer FL, Soergel ME, Straube DC. Urvival of airborne influenza virus: effects of propagating host, relative humidity, and composition of spray fluids[J]. Arch Virol, 1976,51(4):263–273. DOI:10.1007/bf01317930.

    44. [44]

      Lowen AC, Steel J, Mubareka S, et al. High temperature (30 C) blocks aerosol but not contact transmission of influenza virus[J]. J Virol, 2008,82(11):5650–5652. DOI:10.1128/JVI.00325−08.

    45. [45]

      Yang W, Marr LC. Dynamics of airborne influenza A viruses indoors and dependence on humidity[J]. PLoS One, 2011,6(6):e21481. DOI:10.1371/journal.pone.0021481.

    46. [46]

      Noti JD, Blachere FM, McMillen CM, et al. High humidity leads to loss of infectious influenza virus from simulated coughs[J]. PLoS One, 2013,8(2):e57485. DOI:10.1371/journal.pone.0057485.

    47. [47]

      Yang W, Elankumaran S, Marr LC. Relationship between humidity and influenza A viability in droplets and implications for influenza's seasonality[J]. PLoS One, 2012,7(10):e46789. DOI:10.1371/journal.pone.0046789.

    48. [48]

      Shaman J, Kohn M. Absolute humidity modulates influenza survival, transmission, and seasonality[J]. Proc Natl Acad Sci USA, 2009,106(9):3243–3248. DOI:10.1073/pnas.0806852106.

    49. [49]

      McDevitt J, Rudnick S, First M, et al. Role of absolute humidity in the inactivation of influenza viruses on stainless steel surfaces at elevated temperatures[J]. Appl Environ Microbiol, 2010,76(12):3943–3947. DOI:10.1128/AEM.02674−09.

    50. [50]

      McDevitt JJ, Rudnick SN, Radonovich LJ. Aerosol susceptibility of influenza virus to UV-C light[J]. Appl Environ Microbiol, 2012,78(6):1666–1669. DOI:10.1128/AEM.06960−11.

    51. [51]

      Kudo E, Song E, Yockey LJ, et al. Low ambient humidity impairs barrier function and innate resistance against influenza infection[J]. Proc Natl Acad Sci USA, 2019,116(22):10905–10910. DOI:10.1073/pnas.1902840116.

    52. [52]

      Young GA Jr, Underdahl NR, Carpenter LE. Vitamin D intake and susceptibility of mice to experimental swine influenza virus infection[J]. Proc Soc Exp Biol Med, 1949,72(3):695–697. DOI:10.3181/00379727−72−17545.

    53. [53]

      Polozov IV, Bezrukov L, Gawrisch K, et al. Progressive ordering with decreasing temperature of the phospholipids of influenza virus[J]. Nat Chem Biol, 2008,4(4):248–255. DOI:10.1038/nchembio.77.

    54. [54]

      Cannell JJ, Vieth R, Umhau JC, et al. Epidemic influenza and vitamin D[J]. Epidemiol Infect, 2006,134(6):1129–1140. DOI:10.1017/S0950268806007175.

    55. [55]

      Cannell JJ, Zasloff M, Garland CF, et al. On the epidemiology of influenza[J]. Virol J, 2008,5:29. DOI:10.1186/1743−422X−5−29.

    56. [56]

      Koep TH, Enders FT, Pierret C, et al. Predictors of indoor absolute humidity and estimated effects on influenza virus survival in grade schools[J]. BMC Infect Dis, 2013,13:71. DOI:10.1186/1471−2334−13−71.

    57. [57]

      Deyle ER, Maher MC, Hernandez RD, et al. Global environmental drivers of influenza[J]. Proc Natl Acad Sci USA, 2016,113(46):13081–13086. DOI:10.1073/pnas.1607747113.

    58. [58]

      Tamerius JD, Shaman J, Alonso WJ, et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates[J]. PLoS Pathog, 2013,9(3):e1003194. DOI:10.1371/journal.ppat.1003194.

    59. [59]

      Urashima M, Segawa T, Okazaki M, et al. Randomized trial of vitamin D supplementation to prevent seasonal influenza A in schoolchildren[J]. Am J Clin Nutr, 2010,91(5):1255–1260. DOI:10.3945/ajcn.2009.29094.

    1. [1]

      杨筱婷刘东鹏何健苟发香刘海霞郑芸鹤魏孔福成瑶刘新凤 . 2010-2016年甘肃省不同地域流感流行与气象因素相关性的分类回归树分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2019.05.015

    2. [2]

      傅俊杰戴启刚霍翔 . 2011-2019年江苏省不同型别流感病毒流行特征差异分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.11.008

    3. [3]

      周艳丽徐文彩张海艳马立宪潘京海黄辉刘清华 . 北京市东城区细菌性痢疾与气象因素的时间序列分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2009.09.020

    4. [4]

      龚震宇龚训良 . 全球流感活动概况(2016年10月至2017年10月). 疾病监测, DOI: 10.3784/j.issn.1003-9961.2018.03.021

    5. [5]

      龚震宇 (摘译)杨小平 (审校) . 2011-2012年北半球流感季节推荐采用流感疫苗的成分. 疾病监测,

    6. [6]

      郑佳徐婷葛霞英徐路红齐广伟 . 茶摄入与乳腺癌发病风险关系的系统评价/Meta分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2017.07.017

    7. [7]

      龚震宇龚训良 . 全球流感最新疫情动态和2018年南半球流感季节使用流感病毒疫苗组分的建议. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2018.01.020

    8. [8]

      任玉环姚建义闫磊黄晓霞张彦平阎守邕刘亚岚 . 国内外流感监测系统的综合调查研究. 疾病监测,

    9. [9]

      韩建康刘小琦顾志伟金玫华朱红陈卫峰 . 气象因素对呼吸道疾病的影响及预报研究. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2008.11.674

    10. [10]

      李丽丽刘起勇林华亮许磊黄少平杨军 . 北京市房山区手足口病与气象因素的时间序列分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2015.06.007

    11. [11]

      杨旭辉谢立王麟邓晶 . 2006-2007年浙江省杭州市聚集性流感样病例疫情特征. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2009.03.010

    12. [12]

      沈月根周建红顾谢君 . 一起学校甲型H1N1流感聚集性疫情的调查. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2010.02.026

    13. [13]

      陈纯郑红英张周斌王大虎李铁钢王鸣 . 气象因素对广州市虫媒传染病发病影响研究. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2016.12.004

    14. [14]

      罗成旺刘起勇侯建林 . 黑龙江省黑河市肾综合征出血热流行因素相关分析及回归模型的建立. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2009.02.016

    15. [15]

      陈胤忠李峰徐慧黄连成顾振国孙中友严国进朱叶江汤池 . 2005-2014年江苏省盐城市沿海滩涂地区肾综合征出血热时空分布特征及影响因素研究. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2016.06.008

    16. [16]

      姜璎慈李颖 . 气象条件与手足口病发病情况的反向传播神经网络模型构建. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2018.12.014

    17. [17]

      . 广东省东莞市流行性感冒监测系统评估. 疾病监测,

    18. [18]

      彭质斌郑建东姜慧秦颖杨娟余宏杰冯录召 . 全国住院严重急性呼吸道感染病例哨点监测阶段性分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2017.01.003

    19. [19]

      . 2013年全球流感监测咨询会议纪要. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2014.07.022

    20. [20]

      盛艳秋苏潇歌王蕾崔颖聂鑫贺彬 . 2017-2018年黑龙江省护士流感认知及流感疫苗接种情况调查. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.06.016

  • 图 1  文献检索流程

    Figure 1.  Flow chart of literature retrieval

    表 1  电子检索策略(以Pubmed为例)

    Table 1.  Electronic retrieval strategy (taking Pubmed as an example)

    代码检索词
    1流感:influenza OR flu ti/ab
    2气温:temperature OR cold OR hot OR warm OR cool
    3湿度:humidity OR dryness OR wetness
    4气流:airflow OR airstream OR wind speed OR air speed OR (global atmospheric)
    5气压:pressure
    6天气:weather OR sunny OR rainy OR snowy OR cloudy OR overcast OR windy
    7季节:seasonal OR spring OR summer OR autumn OR fall OR winter
    8气候:climate
    9日照:sunlight OR insolation OR sunshine OR ((ultraviolet ray) OR UV)
    10降雨:rainfall OR precipitation OR rain OR snow OR hail
    112 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10
    121 AND 11
    13activity OR mortality OR outbreak OR epidemic OR (annunal peak) OR (seasonality characterizing) OR (seasonal features)
    1412 AND 13
    下载: 导出CSV

    表 2  纳入以人口为基础的流行病学研究基本信息

    Table 2.  Basic information for population-based epidemiological research

    研究国家/地区研究年份流感活动指标气象因素统计方法文献
    温带地区
    西班牙桑坦德1999−2000流感诊断病例数T、RHPearson相关9
    德国美因茨2001−2006流感相关住院率T、RH、WV、PSpearman秩相关、
    偏相关
    10
    苏格兰爱丁堡2009−2015流感阳性数T、RHLogistic回归11
    美国纽约1975−2002P&I死亡率T、Td线性回归12
    英格兰、威尔士1996−1997流感相关死亡数T相关分析13
    美国1972−2002P&I死亡率T、RH、AH、SRAD相关分析、SIRS模型14
    美国(359个县)1973−2002流感相关死亡率T、SH回归分析15
    日本(46个县)a1991−1995、1999−2009流感病例数AH、RH线性回归16
    荷兰1970−2011ILI病例数(ROAH回归分析17
    西班牙2010−2015ILI%×流感阳性率Td、RF广义线性负二项式混合模型18
    美国(35个城市)2002−2005流感相关住院数T、Td、SRAD贝叶斯分层模型19
    中国葫芦岛市2012−2015ILI病例数T、RHSpearman秩相关、
    GAM
    20
    德国柏林、斯洛文尼亚卢布尔雅那、西班牙卡斯蒂利亚-莱昂2006−2011 bILI/ARI病例数×
    流感阳性率
    T、SH、RF、SRADGAM21
    亚热带地区
    日本冲绳2007−2014流感阳性率T、RHSpearman秩相关22
    日本东京1987−1997流感病例数T、RH逐步回归23
    中国苏州2000−2011流感相关住院率T、RH、RF、H、WVSpearman秩相关、
    偏相关
    24
    印度勒克瑙2010−2012流感阳性率T、RH、Td、RF、WV、PLogistic回归25
    新西兰奥克兰1980−2009P&I死亡率T、Td线性回归26
    中国江苏2013−2016ILI病例数×
    流感阳性率
    TDLNM27
    中国台湾1999−2006流感发病率T、RHPoisson回归模型28
    以色列(6个地区)2006−2011ILI/ARI病例数×
    流感阳性率
    T、SH、RF、SRADGAM21
    热带地区
    乌干达恩德培2007−2015流感阳性率T、RH、AH、RFLogistic回归29
    法属圭亚那2006−2010ILI病例数SH、RF动态回归30
    肯尼亚2007−2013流感活动开始周、
    流感病例数
    T、SH、RFLogistic和负二项式
    回归
    31
    喀麦隆雅温得2009−2015流感阳性率T、RH、RF线性回归32
    中国香港1997−2006流感病例数T、RH相关分析33
    中国香港2002−2009P&I死亡率T、RH、RF逐步回归34
    印度加尔各答2007−2008流感阳性数T、RH、RF相关分析35
    马达加斯加塔那那利佛2002−2012 b流感阳性数T、RH、RFSpearman秩相关36
    萨尔瓦多、危地马拉、
    巴拿马
    2008−2013 b流感阳性率T、SH、RFLogistic回归37
    哥斯达黎加、洪都拉斯、
    尼加拉瓜
    2008−2013 b流感阳性率2T、SH、RFLogistic回归38
    新加坡1990−1994流感阳性率RFSpearman秩相关、Box-Jenkins回归-ARIMA39
    越南1993−2010ILIAH回归树分析40
      注:T:气温(℃);RH:相对湿度(%);AH:绝对湿度(g/m3);SH:比湿度(g/kg);Td:露点温度(℃);RF:降雨量(mm);WV:风速(m/s);P:大气压(hpa);SRAD:太阳辐射(W/m3);H:日照时间(h)ILI:流感样病例;P&I:肺炎及流感;DLNM:分布滞后非线性模型;ARIMA:自回归综合移动平均线;GAM:广义相加模型;SIRS模型:由S(易感染者)、I(感染者)和R(恢复者)组成,并假设恢复者一定时间(渐渐失去免疫力)后又变为易感染者。a该文献研究地区不包括亚热带地区的冲绳县;b该文献不包括2009年流感大流行时期
    下载: 导出CSV
  • 加载中
图(1)表(2)
计量
  • PDF下载量:  0
  • 文章访问数:  94
  • HTML全文浏览量:  63
  • 引证文献数: 0
文章相关
通信作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章

在线交流