新型冠状病毒在环境中的存活潜力和感染风险

黄虞远 张思慧 周娟 朱文涛 黄倩妮 杨晶 徐建国

引用本文: 黄虞远, 张思慧, 周娟, 朱文涛, 黄倩妮, 杨晶, 徐建国. 新型冠状病毒在环境中的存活潜力和感染风险[J]. 疾病监测. shu
Citation:  Yuyuan Huang, Sihui Zhang, Juan Zhou, Wentao Zhu, Qianni Huang, Jing Yang and Jianguo Xu. Survival potential and infectiousness of 2019 novel coronavirus in environment[J]. Disease Surveillance. shu

新型冠状病毒在环境中的存活潜力和感染风险

    作者简介: 黄虞远,男,广西壮族自治区贺州市人,在读博士研究生,主要从事传染病的病原学研究,Email: hyylhm@163.com;
    通信作者: 徐建国, xujianguo@icdc.cn
  • 基金项目: 中国工程院咨询研究项目(No. 2020–XZ–37)

摘要: 新型冠状病毒肺炎(COVID-19)传播速度快、范围广,主要通过飞沫和接触传播。 本研究通过整理新型冠状病毒(2019-nCoV)在不同物体表面的存活时间及主要影响因素的相关研究,发现2019-nCoV的稳定性与重症急性呼吸综合征冠状病毒(SARS-CoV)相近,室温下可在多种物体表面或介质中存活数天(不锈钢表面2 d、塑料表面3 d、玻璃表面4 d)。 在低温、低相对湿度条件下,存活时间更长,给人们的健康带来极大威胁,也给疫情防控带来严峻挑战。 2019-nCoV的流行特点与甲型流感病毒相同,传染性高,隐蔽性强。 通过了解2019-nCoV在环境中的存活潜力和感染风险,进行针对性消毒和采取相应的防护措施,可以减少疾病的发生。

English

    1. [1]

      Aoe T. Pathological aspects of COVID-19 as a conformational disease and the use of pharmacological chaperones as a potential therapeutic strategy[J]. Front Pharmacol, 2020,10(11):1095. DOI:10.3389/fphar.2020.01095.

    2. [2]

      World Health Organization. Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020[EB/OL]. (2020-03-11)[2020-09-15]. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020.

    3. [3]

      World Health Organization. WHO coronavirus disease (COVID-19) dashboard[EB/OL]. (2020-09-24)[2020-09-24]. https://covid19.who.int/.

    4. [4]

      Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges[J]. Int J Antimicrob Agents, 2020,55(3):105924. DOI:10.1016/j.ijantimicag.2020.105924.

    5. [5]

      Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States[J]. N Engl J Med, 2020,382(10):929–936. DOI:10.1056/NEJMoa2001191.

    6. [6]

      Li DG, Jin ML, Bao PT, et al. Clinical characteristics and results of semen tests among men with coronavirus disease 2019[J]. JAMA Netw Open, 2020,3(5):e208292. DOI:10.1001/jamanetworkopen.2020.8292.

    7. [7]

      Zamaniyan M, Ebadi A, Aghajanpoor S, et al. Preterm delivery, maternal death, and vertical transmission in a pregnant woman with COVID-19 infection[J]. Prenat Diagn, 2020. DOI:10.1002/pd.5713.

    8. [8]

      Chen YF, Chen LJ, Deng QL, et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients[J]. J Med Virol, 2020,92(7):833–840. DOI:10.1002/jmv.25825.

    9. [9]

      Otter JA, Donskey C, Yezli S, et al. Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination[J]. J Hosp Infect, 2016,92(3):235–250. DOI:10.1016/j.jhin.2015.08.027.

    10. [10]

      Sooryanarain H, Elankumaran S. Environmental role in influenza virus outbreaks[J]. Annu Rev Anim Biosci, 2015,3:347–373. DOI:10.1146/annurev−animal−022114−111017.

    11. [11]

      Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1[J]. N Engl J Med, 2020,382(16):1564–1567. DOI:10.1056/NEJMc2004973.

    12. [12]

      李敬云, 鲍作义, 刘思扬, 等. SARS病毒在外界环境物品中生存和抵抗能力的研究[J]. 中国消毒学杂志,2003,20(2):110–112. DOI:10.3969/j.issn.1001−7658.2003.02.009.
      Li JY, Bao ZY, Liu SY, et al. Survival study of SARS virus in vitro[J]. Chin J Disinfect, 2003,20(2):110–112. DOI:10.3969/j.issn.1001−7658.2003.02.009.

    13. [13]

      Chin AWH, Chu JTS, Perera MRA, et al. Stability of SARS-CoV-2 in different environmental conditions[J].Lancet Microbe, 2020,1(1):e10. DOI:10.1016/S2666−5247(20)30003−3.

    14. [14]

      Van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions[J]. Euro Surveill, 2013,18(38):20590. DOI:10.2807/1560−7917.es2013.18.38.20590.

    15. [15]

      Warnes SL, Little ZR, Keevil CW. Human coronavirus 229E remains infectious on common touch surface materials[J]. mBio, 2015,6(6):e01697–15. DOI:10.1128/mBio.01697−15.

    16. [16]

      Thompson KA, Bennett AM. Persistence of influenza on surfaces[J]. J Hosp Infect, 2017,95(2):194–199. DOI:10.1016/j.jhin.2016.12.003.

    17. [17]

      Bean B, Moore BM, Sterner B, et al. Survival of influenza viruses on environmental surfaces[J]. J Infect Dis, 1982,146(1):47–51. DOI:10.1093/infdis/146.1.47.

    18. [18]

      Noyce JO, Michels H, Keevil CW. Inactivation of influenza A virus on copper versus stainless steel surfaces[J]. Appl Environ Microbiol, 2007,73(8):2748–2750. DOI:10.1128/AEM.01139−06.

    19. [19]

      Oxford J, Berezin EN, Courvalin P, et al. The survival of influenza A(H1N1)pdm09 virus on 4 household surfaces[J]. Am J Infect Control, 2014,42(4):423–425. DOI:10.1016/j.ajic.2013.10.016.

    20. [20]

      Duan SM, Zhao XS, Wen RF, et al. Stability of SARS coronavirus in human specimens and environment and its sensitivity to heating and UV irradiation[J]. Biomed Environ Sci, 2003,16(3):246–255.

    21. [21]

      Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface[J]. Appl Environ Microbiol, 2011,77(5):1541–1547. DOI:10.1128/AEM.02766−10.

    22. [22]

      Dai MM, Li HN, Yan N, et al. Long-term survival of salmon-attached SARS-CoV-2 at 4 ℃ as a potential source of transmission in seafood markets[J]. bioRxiv, 2020. DOI:10.1101/2020.09.06.284695.

    23. [23]

      Warnes SL, Keevil CW. Inactivation of norovirus on dry copper alloy surfaces[J]. PLoS One, 2013,8(9):e75017. DOI:10.1371/journal.pone.0075017.

    24. [24]

      Grass G, Rensing C, Solioz M. Metallic copper as an antimicrobial surface[J]. Appl Environ Microbiol, 2011,77(5):1541–1547. DOI:10.1128/AEM.02766−10.

    25. [25]

      孙红菊. 农产品冷链物法流浅析[J]. 物流技术,2009,28(3):158–159. DOI:10.3969/j.issn.1005−152X.2009.03.053.
      Sun HJ. Analysis on agricultural products cold chain logistics[J]. Logist Technol, 2009,28(3):158–159. DOI:10.3969/j.issn.1005−152X.2009.03.053.

    26. [26]

      Pang X, Ren L, Wu S, et al. Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing[J]. Natl Sci Rev, 2020. DOI:10.1093/nsr/nwaa264.

    27. [27]

      中华人民共和国海关总署. 厄瓜多尔冻南美白虾外包装检出新冠病毒[EB/OL]. (2020-07-10)[2020-09-15]. http://www.bjnews.com.cn/wevideo/2020/07/10/747360.html.
      General Administration of Customs, People's Republic of China. SARS-CoV-2 was detected in outer packaging of frozen South American white shrimp in Ecuador[EB/OL]. (2020-07-10)[2020-09-20]. http://www.bjnews.com.cn/wevideo/2020/07/10/747360.html.

    28. [28]

      深圳市疫情防控指挥部办公室. 深圳龙岗1份进口冻鸡翅表面样品新冠病毒检测呈阳性[EB/OL]. (2020-08-13)[2020-09-20]. http://sz.people.com.cn/n2/2020/0813/c202846-34223396.html.
      Shenzhen Outbreak Prevention and Control Command Office. The surface sample of one imported frozen chicken wing tested positive for 2019-nCoV in Longgang, Shenzhen [EB/OL]. (2020-08-13)[2020-09-20]. http://sz.people.com.cn/n2/2020/0813/c202846-34223396.html.

    29. [29]

      中华人民共和国海关总署. 海关总署对挪威1家水产品企业采取紧急预防性措施[EB/OL]. (2020-09-23)[2020-09-23].http://www.customs.gov.cn//customs/xwfb34/302425/3297667/index.html.
      General Administration of Customs, People's Republic of China. The General Administration of Customs took emergency preventive measures against a Norwegian aquatic product enterprise[EB/OL]. [EB/OL]. (2020-09-23)[2020-09-23]. http://www.customs.gov.cn//customs/xwfb34/302425/3297667/index.html.

    30. [30]

      DiGirolamo R, Liston J, Matches JR. Survival of virus in chilled, frozen, and processed oysters[J]. Appl Microbiol, 1970,20(1):58–63. DOI:10.1128/AEM.20.1.58−63.1970.

    31. [31]

      Durham PJ, Gow A, Poole WS. Survival of Aujeszky's disease virus in frozen pig meat[J]. Res Vet Sci, 1980,28(2):256–258. DOI:10.1016/S0034−5288(18)32758−9.

    32. [32]

      Dale F, Alan R, Zheng AKE, et al. Seeding of outbreaks of COVID-19 by contaminated fresh and frozen food[J]. bioRxiv, (2020-08-19). DOI: https://doi.org/10.1101/2020.08.17.255166.

    33. [33]

      De Graaf M, Beck R, Caccio SM, et al. Sustained fecal-oral human-to-human transmission following a zoonotic event[J]. Curr Opin Virol, 2017,22:1–6. DOI:10.1016/j.coviro.2016.11.001.

    34. [34]

      Ahmed W, Angel N, Edson J, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community[J]. Sci Total Environ, 2020,728:138764. DOI:10.1016/j.scitotenv.2020.138764.

    35. [35]

      Lai MYY, Cheng PKC, Lim WWL. Survival of severe acute respiratory syndrome coronavirus[J]. Clin Infect Dis, 2005,41(7):e67–71. DOI:10.1086/433186.

    36. [36]

      Wang XW, Li JS, Jin M, et al. Study on the resistance of severe acute respiratory syndrome-associated coronavirus[J]. J Virol Methods, 2005,126(1/2):171–177. DOI:10.1016/j.jviromet.2005.02.005.

    37. [37]

      Fears AC, Klimstra WB, Duprex P, et al. Comparative dynamic aerosol efficiencies of three emergent coronaviruses and the unusual persistence of SARS-CoV-2 in aerosol suspensions[J]. medRxiv, 2020. DOI:10.1101/2020.04.13.20063784.

    38. [38]

      Pyankov OV, Bodnev SA, Pyankova OG, et al. Survival of aerosolized coronavirus in the ambient air[J]. J Aerosol Sci, 2018,115:158–163. DOI:10.1016/j.jaerosci.2017.09.009.

    39. [39]

      李敬云, 鲍作义, 刘思扬, 等. 传染性非典型肺炎患者排泄物中SARS病毒生存和抵抗能力的研究[J]. 中华流行病学杂志,2003,24(7):633. DOI:10.3760/j.issn:0254−6450.2003.07.037.
      Li JY, Bao ZY, Liu SY, et al. Study on survival and resistance of SARS virus in excreta of patients with severe acute respiratory syndrome[J]. Chin J Epidemiol, 2003,24(7):633. DOI:10.3760/j.issn:0254−6450.2003.07.037.

    40. [40]

      Matson MJ, Yinda CK, Seifert SN, et al. Effect of Environmental Conditions on SARS-CoV-2 Stability in Human Nasal Mucus and Sputum[J]. Emerg Infect Dis, 2020,26(9):2276–2278. DOI:10.3201/eid2609.202267.

    41. [41]

      Wathore R, Gupta A, Bherwani H, et al. Understanding air and water borne transmission and survival of coronavirus: Insights and way forward for SARS-CoV-2[J].Sci Total Environ, 2020,749:141486. DOI:10.1016/j.scitotenv.2020.141486.

    42. [42]

      Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19[J]. JAMA, 2020,323(18):1837–1838. DOI:10.1001/jama.2020.4756.

    43. [43]

      Pan Y, Zhang D, Yang P, et al. Viral load of SARS-CoV-2 in clinical samples[J]. Lancet Infect Dis, 2020,20(4):411–412. DOI:10.1016/S1473−3099(20)30113−4.

    44. [44]

      Shi P, Dong YQ, Yan HC, et al. Impact of temperature on the dynamics of the COVID-19 outbreak in China[J]. Sci Total Environ, 2020,728:138890. DOI:10.1016/j.scitotenv.2020.138890.

    45. [45]

      Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil[J]. Sci Total Environ, 2020,729:138862. DOI:10.1016/j.scitotenv.2020.138862.

    46. [46]

      Gundy PM, Gerba CP, Pepper IL. Survival of Coronaviruses in water and wastewater[J]. Food Environ Virol, 2009,43(7):1893–1898. DOI: 10.1007/s12560−008−9001−6.

    47. [47]

      Ijaz MK, Brunner AH, Sattar SA, et al. Survival characteristics of airborne human coronavirus 229E[J]. J Gen Virol, 1985,66(Pt 12):2743–2748. DOI:10.1099/0022−1317−66−12−2743.

    48. [48]

      Ma YL, Zhao YD, Liu JT, et al. Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China[J]. Sci Total Environ, 2020,724:138226. DOI:10.1016/j.scitotenv.2020.138226.

    49. [49]

      Noti JD, Blachere FM, McMillen CM, et al. High humidity leads to loss of infectious influenza virus from simulated coughs[J]. PLoS One, 2013,8(2):e57485. DOI:10.1371/journal.pone.0057485.

    50. [50]

      Chan KH, Peiris JSM, Lam SY, et al. The effects of temperature and relative humidity on the viability of the SARS coronavirus[J]. Adv Virol, 2011,2011:734690. DOI:10.1155/2011/734690.

    51. [51]

      Casanova LM, Jeon S, Rutala WA, et al. Effects of air temperature and relative humidity on coronavirus survival on surfaces[J]. Appl Environ Microbiol, 2010,76(9):2712–2717. DOI:10.1128/AEM.02291−09.

    52. [52]

      Zhou H, Chen X, Hu T, et al. A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein[J]. Curr Biol, 2020,30(11):2196–2203. e3. DOI:10.1016/j.cub.2020.05.023.

    53. [53]

      鲍作义, 刘永健, 刘思扬, 等. SARS病毒对温度耐受性的实验研究[J]. 中国消毒学杂志,2003,20(3):161–162. DOI:10.3969/j.issn.1001−7658.2003.03.001.
      Bao ZY, Liu YJ, Liu SY, et al. Endurance of SARS virus to different temperatures[J]. Chin J Disinfect, 2003,20(3):161–162. DOI:10.3969/j.issn.1001−7658.2003.03.001.

    54. [54]

      Ansaldi F, Banfi F, Morelli P, et al. SARS-CoV, influenza A and syncitial respiratory virus resistance against common disinfectants and ultraviolet irradiation[J]. J Prev Med Hyg, 2004,45(1/2):5–8.

    55. [55]

      国家卫生健康委. 《消毒剂使用指南》[EB/OL]. (2020-02-19)[2020-09-10]. http://www.henanyz.com/uploadAttach/20200224/20200224160133_992.pdf.
      National Health Commission of the People's Republic of China. Guidelines for the use of disinfectants[EB/OL]. (2020-02-19)[2020-09-10]. http://www.henanyz.com/uploadAttach/20200224/20200224160133_992.pdf.

    56. [56]

      张文福, 何俊美, 帖金凤, 等. 冠状病毒的抵抗力与消毒[J]. 中国消毒学杂志,2020,37(1):63–67. DOI:10.11726/j.issn.1001−7658.2020.01.020.
      Zhang WF, He JM, Tie JF, et al. Resistance and disinfection of coronavirus[J]. Chin J Disinfect, 2020,37(1):63–67. DOI:10.11726/j.issn.1001−7658.2020.01.020.

    57. [57]

      Bleichert P, Santo CE, Hanczaruk M, et al. Inactivation of bacterial and viral biothreat agents on metallic copper surfaces[J]. Biometals, 2014,27(6):1179–1189. DOI:10.1007/s10534−014−9781−0.

    58. [58]

      Borkow G, Gabbay J. Copper as a biocidal tool[J]. Curr Med Chem, 2005,12(18):2163–2175. DOI:10.2174/0929867054637617.

    59. [59]

      Ibrahim M, Wang F, Lou MM, et al. Copper as an antibacterial agent for human pathogenic multidrug resistant Burkholderia cepacia complex bacteria[J]. J Biosci Bioeng, 2011,112(6):570–576. DOI:10.1016/j.jbiosc.2011.08.017.

    60. [60]

      Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis[J]. Lancet, 2020,395(10242):1973–1987. DOI:10.1016/S0140−6736(20)31142−9.

    1. [1]

      陈敏红贾海梅王瀚炜郑霄雁王清华 . 福建省福州市新型冠状病毒肺炎病例及其密切接触者感染情况分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.07.012

    2. [2]

      江初王菊光蔡伟张绍波应华清邢彦李海生李玉莲富继业北京市海淀区疾病预防控制中心新型冠状病毒肺炎应急处理组 . 北京市海淀区新型冠状病毒肺炎确诊病例流行病学特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.07.011

    3. [3]

      王雷彭欣曲亚斌孟瑞琳康敏陈旭光杨芬 . 广东省复工人员新型冠状病毒肺炎知信行调查. 疾病监测,

    4. [4]

      杨瑛莹詹思怡姜棋竞傅传喜 . 中国258个城市新型冠状病毒肺炎时空分布特征研究. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.11.005

    5. [5]

      郑芸鹤刘海霞苟发香张宏杨筱婷田彦军魏孔福成瑶蒋小娟刘新凤 . 甘肃省新型冠状病毒肺炎疫情时间风险的空间特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.11.006

    6. [6]

      丁哲渊吴昊澄吴晨鲁琴宝林君芬 . 浙江省新型冠状病毒肺炎疫情应急响应期间其他法定传染病监测分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.08.015

    7. [7]

      龚震宇(摘译)龚训良(审校) . 美国新型冠状病毒肺炎病例便利调查样本的临床症状概况(2020年1-4月). 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.08.022

    8. [8]

      龚震宇(摘译)龚训良(审校) . 2020年6月美国佐治亚州通宵夏令营营地发生新型冠状病毒的感染和传播情况. 疾病监测,

    9. [9]

      龚震宇(摘译)龚训良(审校) . 2020年2月12日至5月18日美国新型冠状病毒肺炎死亡病例的分布特征. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.022

    10. [10]

      赵烨孙晋渊杨玲蔡雨阳 . 我国西北及东北边境地区新型冠状病毒肺炎疫情流行特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.007

    11. [11]

      姜海波史宏博冯宏伟顾晓敏李怀亮洪航 . 新型冠状病毒肺炎疫情对浙江省宁波市艾滋病防制工作的影响评估. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.008

    12. [12]

      高海军张颋许光荣叶萍秦忠雪段勇军 . 四川省甘孜藏族自治州新型冠状病毒肺炎病例流行病学特征分析. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.09.006

    13. [13]

      陈嘉敏邱增钊钟舒怡文思敏舒跃龙 . 基于系统综述的新型冠状病毒肺炎与2009年H1N1流感大流行基本传染数研究. 疾病监测,

    14. [14]

      . 中东呼吸综合征冠状病毒最新简报. 疾病监测,

    15. [15]

      魏凤英王金杰徐铣明高建召王博灵马驰宇彭志行靳祯黄森忠 . 全球新型冠状病毒肺炎疫情发展趋势预测. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.06.004

    16. [16]

      黄森忠魏凤英彭志行靳祯王金杰徐铣明张新岩徐建国 . 常态化防控下新型冠状病毒肺炎新发疫情研判方法. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.08.004

    17. [17]

      龚震宇(摘译)龚训良(审校) . 在新型冠状病毒肺炎大流行背景下解释流感监测数据. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2020.10.020

    18. [18]

      龚震宇龚训良 . 中东呼吸综合征冠状病毒出现3年后的流行现况. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2015.12.021

    19. [19]

      叶景荣徐建国 . 冠状病毒的生物学特性. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2005.3.160

    20. [20]

      张蓉凌锋(摘译)龚震宇(审校) . 2012-2013年最新中东呼吸综合征冠状病毒感染的流行现状及对公众、临床工作者和卫生行政当局的指导建议. 疾病监测, DOI: 10.3784/j.issn.1003-9961.2014.03.022

  • 表 1  病毒在不同物体表面或介质中的存活时间

    Table 1.  Survival time of viruses on different subject surfaces and media

    表面或介质 病毒 温度(℃) 相对湿度(%) 存活时间 参考文献
    不锈钢 SARS-CoV 21~23 40 2 d 11
    SARS-CoV 37 2 d 12
    2019-nCoV 21~23 40 2 d 11
    2019-nCoV 室温 65 7 d 13
    MERS-CoV 20 40 2 d 14
    H-CoV 229E 21 30~40 >5 d 15
    甲型流感病毒 19.5~19.7 55.3~55.6 >7 d 16
    甲型流感病毒 27.8~28.3 35~40 ≥2 d 17
    甲型流感病毒 22 50~60 ≥1 d 18
    甲型流感病毒 室温 ≥1 d 19
    塑料 SARS-CoV 室温 4 d 14
    SARS-CoV 21~23 40 3 d 11
    SARS-CoV 37 2 d 12
    2019-nCoV 21~23 40 3 d 11
    2019-nCoV 室温 65 7 d 13
    MERS-CoV 20 40 2 d 14
    H-CoV 229E 21 30~40 >5 d 15
    甲型流感病毒 27.8~28.3 35~40 2 d 17
    甲型流感病毒 室温 ≥1 d 19
    纸质 SARS-CoV 室温 ≥4 d 20
    SARS-CoV 21~23 40 8 h 11
    SARS-CoV 37 6~24 h 12
    2019-nCoV 21-23 40 1 d 11
    2019-nCoV 室温 65 3 h 13
    2019-nCoV 室温 65 4 d 13
    甲型流感病毒 27.8~28.3 35~40 8 h 17
    SARS-CoV 21~23 40 8 h 11
    2019-nCoV 21~23 40 4 h 11
    H-CoV 229E 室温 ≤120 min 15
    H-CoV 229E 室温 ≤40 min 15
    甲型流感病毒 22 50~60 ≥6 h 18
    布料 SARS-CoV 室温 5 d 14
    SARS-CoV 37 4~6 h 12
    2019-nCoV 室温 65 2 d 13
    甲型流感病毒 19.5~19.7 55.3~55.6 7 d 16
    甲型流感病毒 27.8~28.3 35~40 8~12 h 17
    甲型流感病毒 室温 8 h 19
    木片 SARS-CoV 室温 4 d 20
    SARS-CoV 37 1 d 12
    2019-nCoV 室温 65 2 d 13
    甲型流感病毒 室温 2 d 19
    玻璃 SARS-CoV 室温 4 d 20
    SARS-CoV 37 2 d 12
    2019-nCoV 室温 65 4 d 13
    H-CoV 229E 21 30~40 >5 d 15
    甲型流感病毒 NR 1 d 21
    三文鱼 2019-nCoV 4 8 d 22
    三文鱼 2019-nCoV 25 2 d 22
    自来水 SARS-CoV 室温 4 d 20
    自来水 SARS-CoV 37 ≥2 d 12
      注:−. 未报道
    下载: 导出CSV

    表 2  冠状病毒在人类分泌物或排泄物中的存活时间

    Table 2.  Survival time of coronaviruses in human secreta and excreta

    介质类型 病毒类型 温度(℃) 相对湿度(%) 存活时间 参考文献
    气溶胶 SARS-CoV 21~23 40 3 h 11
    2019-nCoV 21~23 40 3 h 11
    2019-nCoV 室温 16 h 37
    MERS-CoV 25 79 1 h 38
    粪便 SARS-CoV 室温 5 d 20
    SARS-CoV 3 d 36
    2019-nCoV 7 d 8
    尿液 SARS-CoV 室温 5 d 20
    SARS-CoV 室温 17 d 36
    痰液 SARS-CoV 室温 ≥4 d 20
    SARS-CoV ≥3 d 39
    2019-nCoV 21 40 24 h 40
      注:−. 未报道
    下载: 导出CSV
  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  60
  • HTML全文浏览量:  40
  • 引证文献数: 0
文章相关
  • 通信作者:  徐建国, xujianguo@icdc.cn
  • 收稿日期:  2020-09-27
  • 网络出版日期:  2020-11-27
通信作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章

在线交流